Skip to content

Commit

Permalink
auto update @ 2024-05-20T09:58:15Z Asia/Shanghai
Browse files Browse the repository at this point in the history
  • Loading branch information
youngfish42 authored and github-actions[bot] committed May 20, 2024
1 parent e8c1b9e commit fc7d387
Show file tree
Hide file tree
Showing 2 changed files with 275 additions and 33 deletions.
66 changes: 33 additions & 33 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -465,10 +465,10 @@ Federated Learning papers accepted by top ML(machine learning) conference and jo

|Title | Affiliation | Venue | Year | Materials|
| ------------------------------------------------------------ | ------------------------------------------------------------ | -------------- | ---- | ------------------------------------------------------------ |
|Communication-efficient clustered federated learning via model distance | USTC; State Key Laboratory of Cognitive Intelligence | Mach Learn | 2024 | [PUB](https://link.springer.com/article/10.1007/s10994-023-06443-5) |
| Communication-efficient clustered federated learning via model distance | USTC; State Key Laboratory of Cognitive Intelligence | Mach Learn | 2024 | [[PUB](https://link.springer.com/article/10.1007/s10994-023-06443-5)] |
| Federated learning with superquantile aggregation for heterogeneous data. | Google Research | Mach Learn | 2024 | [[PUB](https://link.springer.com/article/10.1007/s10994-023-06332-x)] [[PDF](https://arxiv.org/abs/2112.09429)] [[CODE](https://github.com/krishnap25/simplicial-fl)] |
| Aligning model outputs for class imbalanced non-IID federated learning | NJU | Mach Learn | 2024 | [[PUB](https://link.springer.com/article/10.1007/s10994-022-06241-5)] |
| Federated Gaussian Process: Convergence, Automatic Personalization and Multi-Fidelity Modeling | Northeastern University; UoM | TPAMI | 2024 | [PUB](https://ieeexplore.ieee.org/document/10402074) [PDF](https://arxiv.org/abs/2111.14008) [CODE](https://github.com/UMDataScienceLab/Federated_Gaussian_Process) |
| Federated Gaussian Process: Convergence, Automatic Personalization and Multi-Fidelity Modeling | Northeastern University; UoM | TPAMI | 2024 | [[PUB](https://ieeexplore.ieee.org/document/10402074)] [[PDF](https://arxiv.org/abs/2111.14008)] [[CODE](https://github.com/UMDataScienceLab/Federated_Gaussian_Process)] |
| The Impact of Adversarial Attacks on Federated Learning: A Survey | IIT | TPAMI | 2024 | [[PUB](https://ieeexplore.ieee.org/document/10274102)] |
| Understanding and Mitigating Dimensional Collapse in Federated Learning | NUS | TPAMI | 2024 | [[PUB](https://ieeexplore.ieee.org/document/10336535)] [[PDF](https://arxiv.org/abs/2210.00226)] [[CODE](https://github.com/bytedance/FedDecorr)] |
| No One Left Behind: Real-World Federated Class-Incremental Learning | CAS; UCAS | TPAMI | 2024 | [[PUB](https://ieeexplore.ieee.org/document/10323204)] [[PDF](https://arxiv.org/abs/2302.00903)] [[CODE](https://github.com/JiahuaDong/LGA)] |
Expand Down Expand Up @@ -1491,35 +1491,35 @@ Federated Learning papers accepted by top Database conference and journal, inclu

|Title | Affiliation | Venue | Year | Materials|
| ------------------------------------------------------------ | ------------------------------------------------------------ | ---------- | ---- | ------------------------------------------------------------ |
|Accelerating the Decentralized Federated Learning via Manipulating Edges | SZU | WWW | 2024 | [PUB](https://dl.acm.org/doi/10.1145/3589334.3645509) |
|Prompt-enhanced Federated Content Representation Learning for Cross-domain Recommendation | SDNU | WWW | 2024 | [PUB](https://dl.acm.org/doi/10.1145/3589334.3645337) [PDF](https://arxiv.org/abs/2401.14678) [CODE](https://github.com/ckano/pfcr) |
|PAGE: Equilibrate Personalization and Generalization in Federated Learning | XDU | WWW | 2024 | [PUB](https://dl.acm.org/doi/10.1145/3589334.3645513) [PDF](https://arxiv.org/abs/2310.08961) [CODE](https://github.com/ivy-h7/PAGE) |
|Federated Learning Vulnerabilities: Privacy Attacks with Denoising Diffusion Probabilistic Models | ECNU | WWW | 2024 | [PUB](https://dl.acm.org/doi/10.1145/3589334.3645514) |
|Co-clustering for Federated Recommender System | UIUC | WWW | 2024 | [PUB](https://dl.acm.org/doi/10.1145/3589334.3645626) |
|Incentive and Dynamic Client Selection for Federated Unlearning | BUPT | WWW | 2024 | [PUB](https://dl.acm.org/doi/10.1145/3589334.3645462) |
|Towards Efficient Communication and Secure Federated Recommendation System via Low-rank Training | VinUniversity | WWW | 2024 | [PUB](https://dl.acm.org/doi/10.1145/3589334.3645702) [PDF](https://arxiv.org/abs/2401.03748) [CODE](https://github.com/nnhieu/colr-fedrec) |
|BlockDFL: A Blockchain-based Fully Decentralized Peer-to-Peer Federated Learning Framework | ZJU | WWW | 2024 | [PUB](https://dl.acm.org/doi/10.1145/3589334.3645425) [PDF](https://arxiv.org/abs/2205.10568) |
|Towards Personalized Privacy: User-Governed Data Contribution for Federated Recommendation | UQ | WWW | 2024 | [PUB](https://dl.acm.org/doi/10.1145/3589334.3645690) [PDF](https://arxiv.org/abs/2401.17630) |
|FedDSE: Distribution-aware Sub-model Extraction for Federated Learning over Resource-constrained Devices | NTU | WWW | 2024 | [PUB](https://dl.acm.org/doi/10.1145/3589334.3645416) |
|Cardinality Counting in "Alcatraz": A Privacy-aware Federated Learning Approach | CSIRO’s Data61 | WWW | 2024 | [PUB](https://dl.acm.org/doi/10.1145/3589334.3645655) |
|Federated Heterogeneous Graph Neural Network for Privacy-preserving Recommendation | BUPT | WWW | 2024 | [PUB](https://dl.acm.org/doi/10.1145/3589334.3645693) [PDF](https://arxiv.org/abs/2310.11730) |
|Poisoning Federated Recommender Systems with Fake Users | USTC | WWW | 2024 | [PUB](https://dl.acm.org/doi/10.1145/3589334.3645492) [PDF](https://arxiv.org/abs/2402.11637) |
|Towards Energy-efficient Federated Learning via INT8-based Training on Mobile DSPs | BUPT | WWW | 2024 | [PUB](https://dl.acm.org/doi/10.1145/3589334.3645341) |
|Privacy-Preserving and Fairness-Aware Federated Learning for Critical Infrastructure Protection and Resilience | UTS | WWW | 2024 | [PUB](https://dl.acm.org/doi/10.1145/3589334.3645545) [CODE](https://github.com/CGD-release/cgd) |
|When Federated Recommendation Meets Cold-Start Problem: Separating Item Attributes and User Interactions | JLU | WWW | 2024 | [PUB](https://dl.acm.org/doi/10.1145/3589334.3645525) [PDF](https://arxiv.org/abs/2305.12650) [CODE](https://github.com/Zhangcx19/IFedRec) |
|How Few Davids Improve One Goliath: Federated Learning in Resource-Skewed Edge Computing Environments | UCSD | WWW | 2024 | [PUB](https://dl.acm.org/doi/10.1145/3589334.3645544) [CODE](https://github.com/jiayunz/RecipFL) [VIDEO](https://www.youtube.com/watch?v=nN1UjYw_6uQ) |
|Poisoning Attack on Federated Knowledge Graph Embedding | PolyU | WWW | 2024 | [PUB](https://dl.acm.org/doi/10.1145/3589334.3645422) [CODE](https://github.com/jisooma/FKGEPoison) |
|FL@FM-TheWebConf'24: International Workshop on Federated Foundation Models for the Web | CUHK | WWW (Companion Volume) | 2024 | [PUB](https://dl.acm.org/doi/10.1145/3589335.3641298) [PAGE](https://federated-learning.org/fl@fm-www-2024/) |
|An Investigation into the Feasibility of Performing Federated Learning on Social Linked Data Servers | University of Southampton | WWW (Companion Volume) | 2024 | [PUB](https://dl.acm.org/doi/10.1145/3589335.3651950) |
|Exploring Representational Similarity Analysis to Protect Federated Learning from Data Poisoning | SYSU | WWW (Companion Volume) | 2024 | [PUB](https://dl.acm.org/doi/10.1145/3589335.3651503) |
|Only Send What You Need: Learning to Communicate Efficiently in Federated Multilingual Machine Translation | Purdue University | WWW (Companion Volume) | 2024 | [PUB](https://dl.acm.org/doi/10.1145/3589335.3651931) [PDF](https://arxiv.org/abs/2401.07456) |
|FedHLT: Efficient Federated Low-Rank Adaption with Hierarchical Language Tree for Multilingual Modeling | CUHK | WWW (Companion Volume) | 2024 | [PUB](https://dl.acm.org/doi/10.1145/3589335.3651933) |
|HBIAS FedAvg: Smooth Federated Learning Transition for In-use Edge Models | IIT | WWW (Companion Volume) | 2024 | [PUB](https://dl.acm.org/doi/10.1145/3589335.3651518) |
|Phoenix: A Federated Generative Diffusion Model | UW | WWW (Companion Volume) | 2024 | [PUB](https://dl.acm.org/doi/10.1145/3589335.3651935) |
|Federated Learning in Large Model Era: Vision-Language Model for Smart City Safety Operation Management | ENN; UPC | WWW (Companion Volume) | 2024 | [PUB](https://dl.acm.org/doi/10.1145/3589335.3651939) |
|Robust Federated Learning Mitigates Client-side Training Data Distribution Inference Attacks | USTC | WWW (Companion Volume) | 2024 | [PUB](https://dl.acm.org/doi/10.1145/3589335.3651555) [PDF](https://arxiv.org/abs/2403.03149) |
|GradFilt: Class-wise Targeted Data Reconstruction from Gradients in Federated Learning | PolyU | WWW (Companion Volume) | 2024 | [PUB](https://dl.acm.org/doi/10.1145/3589335.3651514) |
|Detecting Poisoning Attacks on Federated Learning Using Gradient-Weighted Class Activation Mapping | ISEP | WWW (Companion Volume) | 2024 | [PUB](https://dl.acm.org/doi/10.1145/3589335.3651490) |
| Accelerating the Decentralized Federated Learning via Manipulating Edges | SZU | WWW | 2024 | [[PUB](https://dl.acm.org/doi/10.1145/3589334.3645509)] |
| Prompt-enhanced Federated Content Representation Learning for Cross-domain Recommendation | SDNU | WWW | 2024 | [[PUB](https://dl.acm.org/doi/10.1145/3589334.3645337)] [[PDF](https://arxiv.org/abs/2401.14678)] [[CODE](https://github.com/ckano/pfcr)] |
| PAGE: Equilibrate Personalization and Generalization in Federated Learning | XDU | WWW | 2024 | [[PUB](https://dl.acm.org/doi/10.1145/3589334.3645513)] [[PDF](https://arxiv.org/abs/2310.08961)] [[CODE](https://github.com/ivy-h7/PAGE)] |
| Federated Learning Vulnerabilities: Privacy Attacks with Denoising Diffusion Probabilistic Models | ECNU | WWW | 2024 | [[PUB](https://dl.acm.org/doi/10.1145/3589334.3645514)] |
| Co-clustering for Federated Recommender System | UIUC | WWW | 2024 | [[PUB](https://dl.acm.org/doi/10.1145/3589334.3645626)] |
| Incentive and Dynamic Client Selection for Federated Unlearning | BUPT | WWW | 2024 | [[PUB](https://dl.acm.org/doi/10.1145/3589334.3645462)] |
| Towards Efficient Communication and Secure Federated Recommendation System via Low-rank Training | VinUniversity | WWW | 2024 | [[PUB](https://dl.acm.org/doi/10.1145/3589334.3645702)] [[PDF](https://arxiv.org/abs/2401.03748)] [[CODE](https://github.com/nnhieu/colr-fedrec)] |
| BlockDFL: A Blockchain-based Fully Decentralized Peer-to-Peer Federated Learning Framework | ZJU | WWW | 2024 | [[PUB](https://dl.acm.org/doi/10.1145/3589334.3645425)] [[PDF](https://arxiv.org/abs/2205.10568)] |
| Towards Personalized Privacy: User-Governed Data Contribution for Federated Recommendation | UQ | WWW | 2024 | [[PUB](https://dl.acm.org/doi/10.1145/3589334.3645690)] [[PDF](https://arxiv.org/abs/2401.17630)] |
| FedDSE: Distribution-aware Sub-model Extraction for Federated Learning over Resource-constrained Devices | NTU | WWW | 2024 | [[PUB](https://dl.acm.org/doi/10.1145/3589334.3645416)] |
| Cardinality Counting in "Alcatraz": A Privacy-aware Federated Learning Approach | CSIRO’s Data61 | WWW | 2024 | [[PUB](https://dl.acm.org/doi/10.1145/3589334.3645655)] |
| Federated Heterogeneous Graph Neural Network for Privacy-preserving Recommendation | BUPT | WWW | 2024 | [[PUB](https://dl.acm.org/doi/10.1145/3589334.3645693)] [[PDF](https://arxiv.org/abs/2310.11730)] |
| Poisoning Federated Recommender Systems with Fake Users | USTC | WWW | 2024 | [[PUB](https://dl.acm.org/doi/10.1145/3589334.3645492)] [[PDF](https://arxiv.org/abs/2402.11637)] |
| Towards Energy-efficient Federated Learning via INT8-based Training on Mobile DSPs | BUPT | WWW | 2024 | [[PUB](https://dl.acm.org/doi/10.1145/3589334.3645341)] |
| Privacy-Preserving and Fairness-Aware Federated Learning for Critical Infrastructure Protection and Resilience | UTS | WWW | 2024 | [[PUB](https://dl.acm.org/doi/10.1145/3589334.3645545)] [[CODE](https://github.com/CGD-release/cgd)] |
| When Federated Recommendation Meets Cold-Start Problem: Separating Item Attributes and User Interactions | JLU | WWW | 2024 | [[PUB](https://dl.acm.org/doi/10.1145/3589334.3645525)] [[PDF](https://arxiv.org/abs/2305.12650)] [[CODE](https://github.com/Zhangcx19/IFedRec)] |
| How Few Davids Improve One Goliath: Federated Learning in Resource-Skewed Edge Computing Environments | UCSD | WWW | 2024 | [[PUB](https://dl.acm.org/doi/10.1145/3589334.3645544)] [[CODE](https://github.com/jiayunz/RecipFL)] [[VIDEO](https://www.youtube.com/watch?v=nN1UjYw_6uQ)] |
| Poisoning Attack on Federated Knowledge Graph Embedding | PolyU | WWW | 2024 | [[PUB](https://dl.acm.org/doi/10.1145/3589334.3645422)] [[CODE](https://github.com/jisooma/FKGEPoison)] |
| FL@FM-TheWebConf'24: International Workshop on Federated Foundation Models for the Web | CUHK | WWW (Companion Volume) | 2024 | [[PUB](https://dl.acm.org/doi/10.1145/3589335.3641298)] [[PAGE](https://federated-learning.org/fl@fm-www-2024/)] |
| An Investigation into the Feasibility of Performing Federated Learning on Social Linked Data Servers | University of Southampton | WWW (Companion Volume) | 2024 | [[PUB](https://dl.acm.org/doi/10.1145/3589335.3651950)] |
| Exploring Representational Similarity Analysis to Protect Federated Learning from Data Poisoning | SYSU | WWW (Companion Volume) | 2024 | [[PUB](https://dl.acm.org/doi/10.1145/3589335.3651503)] |
| Only Send What You Need: Learning to Communicate Efficiently in Federated Multilingual Machine Translation | Purdue University | WWW (Companion Volume) | 2024 | [[PUB](https://dl.acm.org/doi/10.1145/3589335.3651931)] [[PDF](https://arxiv.org/abs/2401.07456)] |
| FedHLT: Efficient Federated Low-Rank Adaption with Hierarchical Language Tree for Multilingual Modeling | CUHK | WWW (Companion Volume) | 2024 | [[PUB](https://dl.acm.org/doi/10.1145/3589335.3651933)] |
| HBIAS FedAvg: Smooth Federated Learning Transition for In-use Edge Models | IIT | WWW (Companion Volume) | 2024 | [[PUB](https://dl.acm.org/doi/10.1145/3589335.3651518)] |
| Phoenix: A Federated Generative Diffusion Model | UW | WWW (Companion Volume) | 2024 | [[PUB](https://dl.acm.org/doi/10.1145/3589335.3651935)] |
| Federated Learning in Large Model Era: Vision-Language Model for Smart City Safety Operation Management | ENN; UPC | WWW (Companion Volume) | 2024 | [[PUB](https://dl.acm.org/doi/10.1145/3589335.3651939)] |
| Robust Federated Learning Mitigates Client-side Training Data Distribution Inference Attacks | USTC | WWW (Companion Volume) | 2024 | [[PUB](https://dl.acm.org/doi/10.1145/3589335.3651555)] [[PDF](https://arxiv.org/abs/2403.03149)] |
| GradFilt: Class-wise Targeted Data Reconstruction from Gradients in Federated Learning | PolyU | WWW (Companion Volume) | 2024 | [[PUB](https://dl.acm.org/doi/10.1145/3589335.3651514)] |
| Detecting Poisoning Attacks on Federated Learning Using Gradient-Weighted Class Activation Mapping | ISEP | WWW (Companion Volume) | 2024 | [[PUB](https://dl.acm.org/doi/10.1145/3589335.3651490)] |
| AutoFed: Heterogeneity-Aware Federated Multimodal Learning for Robust Autonomous Driving | NTU | MobiCom | 2023 | [[PUB](https://dl.acm.org/doi/10.1145/3570361.3592517)] [[PDF](https://arxiv.org/abs/2302.08646)] |
| Efficient Federated Learning for Modern NLP | Beiyou Shenzhen Institute | MobiCom | 2023 | [[PDF](https://arxiv.org/abs/2205.10162)] [[解读](https://zhuanlan.zhihu.com/p/638270746)] |
| FLASH: Towards a High-performance Hardware Acceleration Architecture for Cross-silo Federated Learning | HKUST; Clustar | NSDI | 2023 | [[PUB](https://www.usenix.org/conference/nsdi23/presentation/zhang-junxue)] [[SLIDE](https://www.usenix.org/system/files/nsdi23_slides_zhang.pdf)] [[VIDEO](https://www.youtube.com/watch?v=I5V3r-8sY-Y)] |
Expand Down Expand Up @@ -1652,8 +1652,8 @@ Federated Learning papers accepted by top Database conference and journal, inclu
| FLIGAN: Enhancing Federated Learning with Incomplete Data using GAN | | EuroSys workshop | 2024 | [[PUB](https://dl.acm.org/doi/10.1145/3642968.3654813)] |
| ALS Algorithm for Robust and Communication-Efficient Federated Learning | | EuroSys workshop | 2024 | [[PUB](https://dl.acm.org/doi/10.1145/3642970.3655842)] |
| FedRDMA: Communication-Efficient Cross-Silo Federated LLM via Chunked RDMA Transmission. | | EuroSys workshop | 2024 | [[PUB](https://dl.acm.org/doi/10.1145/3642970.3655834)] |
| Taking Advantage of the Mistakes: Rethinking Clustered Federated Learning for IoT Anomaly Detection | UVIC | TPDS | 2024 | [PUB](https://ieeexplore.ieee.org/document/10476751) |
| FedICT: Federated Multi-Task Distillation for Multi-Access Edge Computing | UCAS | TPDS | 2024 | [PUB](https://ieeexplore.ieee.org/document/10163770) [PDF](http://export.arxiv.org/abs/2301.00389) |
| Taking Advantage of the Mistakes: Rethinking Clustered Federated Learning for IoT Anomaly Detection | UVIC | TPDS | 2024 | [[PUB](https://ieeexplore.ieee.org/document/10476751)] |
| FedICT: Federated Multi-Task Distillation for Multi-Access Edge Computing | UCAS | TPDS | 2024 | [[PUB](https://ieeexplore.ieee.org/document/10163770)] [[PDF](http://export.arxiv.org/abs/2301.00389)] |
| Collaboration in Federated Learning With Differential Privacy: A Stackelberg Game Analysis | SYSU | TPDS | 2024 | [[PUB](https://ieeexplore.ieee.org/document/10400897)] |
| FAST: Enhancing Federated Learning Through Adaptive Data Sampling and Local Training | USTC | TPDS | 2024 | [[PUB](https://ieeexplore.ieee.org/document/10323207)] |
| EcoFed: Efficient Communication for DNN Partitioning-Based Federated Learning | University of St Andrews | TPDS | 2024 | [[PUB](https://ieeexplore.ieee.org/document/10380682)] [[PDF](https://arxiv.org/abs/2304.05495)] [[CODE](https://github.com/blessonvar/ecofed)] |
Expand Down
Loading

0 comments on commit fc7d387

Please sign in to comment.