Skip to content

Commit

Permalink
add TPAMI, TC, TCAD 2024 papers
Browse files Browse the repository at this point in the history
  • Loading branch information
youngfish42 committed Mar 8, 2024
1 parent 85fb1ff commit 8948704
Showing 1 changed file with 12 additions and 0 deletions.
12 changes: 12 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -193,6 +193,9 @@ Federated Learning papers accepted by top AI(Artificial Intelligence) conference

|Title | Affiliation | Venue | Year | Materials|
| ------------------------------------------------------------ | ------------------------------------------------------------ | ------- | ---- | ------------------------------------------------------------ |
|Generalizable Heterogeneous Federated Cross-Correlation and Instance Similarity Learning | WHU | TPAMI | 2024 | [PUB](https://ieeexplore.ieee.org/document/10295990) [PDF](https://arxiv.org/abs/2309.16286) [CODE](https://github.com/WenkeHuang/FCCL) |
|Multi-Stage Asynchronous Federated Learning With Adaptive Differential Privacy | HPU; XJTU | TPAMI | 2024 | [PUB](https://ieeexplore.ieee.org/document/10316599) [PDF](https://arxiv.org/abs/1912.07902) [CODE](https://github.com/IoTDATALab/MAPA) |
|A Bayesian Federated Learning Framework With Online Laplace Approximation | SUSTech | TPAMI | 2024 | [PUB](https://ieeexplore.ieee.org/document/10274722) [PDF](https://arxiv.org/abs/2102.01936) [CODE](https://github.com/Klitter/A-Bayesian-Federated-Learning-Framework-with-Online-Laplace-Approximation) |
| Privacy-preserving graph convolution network for federated item recommendation | SZU | AI | 2023 | [[PUB](https://www.sciencedirect.com/science/article/abs/pii/S000437022300142X)] |
| Win-Win: A Privacy-Preserving Federated Framework for Dual-Target Cross-Domain Recommendation | CAS; UCAS; JD Technology; JD Intelligent Cities Research | AAAI | 2023 | [[PUB](https://ojs.aaai.org/index.php/AAAI/article/view/25531)] |
| Untargeted Attack against Federated Recommendation Systems via Poisonous Item Embeddings and the Defense | USTC; State Key Laboratory of Cognitive Intelligence | AAAI | 2023 | [[PUB](https://ojs.aaai.org/index.php/AAAI/article/view/25611)] [[PDF](https://arxiv.org/abs/2212.05399)] [[CODE](https://github.com/yflyl613/fedrec)] |
Expand Down Expand Up @@ -1127,6 +1130,10 @@ Federated Learning papers accepted by top CV(computer vision) conference and jou
| Robust Heterogeneous Federated Learning under Data Corruption | WHU | ICCV | 2023 | [[PUB](https://openaccess.thecvf.com/content/ICCV2023/html/Fang_Robust_Heterogeneous_Federated_Learning_under_Data_Corruption_ICCV_2023_paper.html)] [[CODE](https://github.com/FangXiuwen/AugHFL)] [[SUPP](https://openaccess.thecvf.com/content/ICCV2023/supplemental/Fang_Robust_Heterogeneous_Federated_ICCV_2023_supplemental.pdf)] |
| Personalized Semantics Excitation for Federated Image Classification | Tulane University | ICCV | 2023 | [[PUB](https://openaccess.thecvf.com/content/ICCV2023/html/Xia_Personalized_Semantics_Excitation_for_Federated_Image_Classification_ICCV_2023_paper.html)] [[CODE](https://github.com/HaifengXia/PSE)] |
| Reducing Training Time in Cross-Silo Federated Learning Using Multigraph Topology | AIOZ | ICCV | 2023 | [[PUB](https://openaccess.thecvf.com/content/ICCV2023/html/Do_Reducing_Training_Time_in_Cross-Silo_Federated_Learning_Using_Multigraph_Topology_ICCV_2023_paper.html)] [[PDF](http://arxiv.org/abs/2207.09657)] [[CODE](https://github.com/aioz-ai/MultigraphFL)] [[SUPP](https://openaccess.thecvf.com/content/ICCV2023/supplemental/Do_Reducing_Training_Time_in_Cross-Silo_Federated_Learning_Using_Multigraph_Topology_ICCV_2023_supplemental.pdf)] |
| Window-based Model Averaging Improves Generalization in Heterogeneous Federated Learning. | | ICCV workshop | 2023 | |
| Experience Replay as an Effective Strategy for Optimizing Decentralized Federated Learning. | | ICCV workshop | 2023 | |
| FedRCIL: Federated Knowledge Distillation for Representation based Contrastive Incremental Learning. | | ICCV workshop | 2023 | |
| FedLID: Self-Supervised Federated Learning for Leveraging Limited Image Data. | | ICCV workshop | 2023 | |
| Rethinking Federated Learning With Domain Shift: A Prototype View | WHU | CVPR | 2023 | [[PUB](https://openaccess.thecvf.com/content/CVPR2023/html/Huang_Rethinking_Federated_Learning_With_Domain_Shift_A_Prototype_View_CVPR_2023_paper.html)] [[CODE](https://github.com/WenkeHuang/RethinkFL)] |
| Class Balanced Adaptive Pseudo Labeling for Federated Semi-Supervised Learning | ECNU | CVPR | 2023 | [[PUB](https://openaccess.thecvf.com/content/CVPR2023/html/Li_Class_Balanced_Adaptive_Pseudo_Labeling_for_Federated_Semi-Supervised_Learning_CVPR_2023_paper.html)] [[CODE](https://github.com/minglllli/CBAFed)] |
| DaFKD: Domain-Aware Federated Knowledge Distillation | HUST | CVPR | 2023 | [[PUB](https://openaccess.thecvf.com/content/CVPR2023/html/Wang_DaFKD_Domain-Aware_Federated_Knowledge_Distillation_CVPR_2023_paper.html)] [[CODE](https://github.com/haozhaowang/DaFKD2023)] |
Expand Down Expand Up @@ -1503,6 +1510,10 @@ Federated Learning papers accepted by top Database conference and journal, inclu

|Title | Affiliation | Venue | Year | Materials|
| ------------------------------------------------------------ | ------------------------- | ------------------------- | ---- | ------------------------------------------------------------ |
|FedComp: A Federated Learning Compression Framework for Resource-Constrained Edge Computing Devices | | TCAD | 2024 | [PUB](https://ieeexplore.ieee.org/document/10226409) |
|Age-Aware Data Selection and Aggregator Placement for Timely Federated Continual Learning in Mobile Edge Computing | | TC | 2024 | [PUB](https://ieeexplore.ieee.org/document/10324368) |
|FedGKD: Toward Heterogeneous Federated Learning via Global Knowledge Distillation | | TC | 2024 | [PUB](https://ieeexplore.ieee.org/document/10252049) |
|Digital Twin-Assisted Federated Learning Service Provisioning Over Mobile Edge Networks | | TC | 2024 | [PUB](https://ieeexplore.ieee.org/document/10335637) |
| REFL: Resource-Efficient Federated Learning | QMUL | EuroSys | 2023 | [[PUB](https://dl.acm.org/doi/10.1145/3552326.3567485)] [[PDF](https://arxiv.org/abs/2111.01108)] [[CODE](https://github.com/ahmedcs/refl)] |
| A First Look at the Impact of Distillation Hyper-Parameters in Federated Knowledge Distillation | | EuroSys workshop | 2023 | [[PUB](https://dl.acm.org/doi/10.1145/3578356.3592590)] |
| Towards Practical Few-shot Federated NLP | | EuroSys workshop | 2023 | [[PUB](https://dl.acm.org/doi/10.1145/3578356.3592575)] |
Expand Down Expand Up @@ -2161,6 +2172,7 @@ This section partially refers to [The Federated Learning Portal](https://federat

![](https://img.shields.io/github/last-commit/youngfish42/Awesome-FL)

- *2024/03/08 - add TPAMI, TC, TCAD 2024 papers*
- *2024/02/23 - add ICLR 2024 papers*
- *2024/01/02 - add NeurIPS 2023 papers*
- *2023/12/13 - add MM, CCS, EMNLP 2023 papers and update VLDB, TC, TCAD papers*
Expand Down

0 comments on commit 8948704

Please sign in to comment.