Skip to content
forked from jax-ml/bayeux

State of the art inference for your bayesian models.

License

Notifications You must be signed in to change notification settings

theorashid/bayeux

 
 

Repository files navigation

Bayeux

Stitching together models and samplers

Unittests PyPI version

bayeux lets you write a probabilistic model in JAX and immediately have access to state-of-the-art inference methods. The API aims to be simple, self descriptive, and helpful. Simply provide a log density function (which doesn't even have to be normalized), along with a single point (specified as a pytree) where that log density is finite. Then let bayeux do the rest!

Installation

pip install bayeux-ml

Quickstart

We define a model by providing a log density in JAX. This could be defined using a probabilistic programming language (PPL) like numpyro, PyMC, TFP, distrax, oryx, coix, or directly in JAX.

import bayeux as bx
import jax

normal_density = bx.Model(
  log_density=lambda x: -x*x,
  test_point=1.)

seed = jax.random.PRNGKey(0)

Simple

Every inference algorithm in bayeux will (try to) run with just a seed as an argument:

opt_results = normal_density.optimize.optax_adam(seed=seed)
# OR!
idata = normal_density.mcmc.numpyro_nuts(seed=seed)
# OR!
surrogate_posterior, loss = normal_density.vi.tfp_factored_surrogate_posterior(seed=seed)

An (only rarely) optional third argument to bx.Model is transform_fn, which maps a real number to the support of the distribution. The oryx library is used to automatically compute the inverse and Jacobian determinants for changes of variables, but the user can supply these if known.

half_normal_density = bx.Model(
    lambda x: -x*x,
    test_point=1.,
    transform_fn=jax.nn.softplus)

Self descriptive

Since bayeux is built on top of other fantastic libraries, it tries not to get in the way of them. Each algorithm has a .get_kwargs() method that tells you how it will be called, and what functions are being called:

normal_density.optimize.jaxopt_bfgs.get_kwargs()

{jaxopt._src.bfgs.BFGS: {'value_and_grad': False,
  'has_aux': False,
  'maxiter': 500,
  'tol': 0.001,
  'stepsize': 0.0,
  'linesearch': 'zoom',
  'linesearch_init': 'increase',
  'condition': None,
  'maxls': 30,
  'decrease_factor': None,
  'increase_factor': 1.5,
  'max_stepsize': 1.0,
  'min_stepsize': 1e-06,
  'implicit_diff': True,
  'implicit_diff_solve': None,
  'jit': True,
  'unroll': 'auto',
  'verbose': False},
 'extra_parameters': {'chain_method': 'vectorized',
  'num_particles': 8,
  'num_iters': 1000,
  'apply_transform': True}}

If you pass an argument into .get_kwargs(), this will also tell you what will be passed on to the actual algorithms.

normal_density.mcmc.blackjax_nuts.get_kwargs(
    num_chains=5,
    target_acceptance_rate=0.99)

{<blackjax.adaptation.window_adaptation.window_adaptation: {'is_mass_matrix_diagonal': True,
  'initial_step_size': 1.0,
  'target_acceptance_rate': 0.99,
  'progress_bar': False,
  'algorithm': blackjax.mcmc.nuts.nuts},
 blackjax.mcmc.nuts.nuts: {'max_num_doublings': 10,
  'divergence_threshold': 1000,
  'integrator': blackjax.mcmc.integrators.velocity_verlet,
  'step_size': 0.01},
 'extra_parameters': {'chain_method': 'vectorized',
  'num_chains': 5,
  'num_draws': 500,
  'num_adapt_draws': 500,
  'return_pytree': False}}

A full list of available algorithms and how to call them can be seen with

print(normal_density)

mcmc
  .blackjax_hmc
  .blackjax_nuts
  .blackjax_hmc_pathfinder
  .blackjax_nuts_pathfinder
  .numpyro_hmc
  .numpyro_nuts
optimize
  .jaxopt_bfgs
  .jaxopt_gradient_descent
  .jaxopt_lbfgs
  .jaxopt_nonlinear_cg
  .optax_adabelief
  .optax_adafactor
  .optax_adagrad
  .optax_adam
  .optax_adamw
  .optax_adamax
  .optax_amsgrad
  .optax_fromage
  .optax_lamb
  .optax_lion
  .optax_noisy_sgd
  .optax_novograd
  .optax_radam
  .optax_rmsprop
  .optax_sgd
  .optax_sm3
  .optax_yogi
vi
  .tfp_factored_surrogate_posterior

Helpful

Algorithms come with a built-in debug mode that attempts to fail quickly and in a manner that might help debug problems quickly. The signature for debug accepts verbosity and catch_exceptions arguments, as well as a kwargs dictionary that the user plans to pass to the algorithm itself.

normal_density.mcmc.numpyro_nuts.debug(seed=seed)

Checking test_point shapeComputing test point log densityLoading keyword arguments... ✓
Checking it is possible to compute an initial stateChecking initial state is has no NaNComputing initial state log densityTransforming model to R^nComputing transformed state log density shapeComparing transformed log density to untransformedComputing gradients of transformed log densityTrue

Here is an example of a bad model with a higher verbosity:

import jax.numpy as jnp

bad_model = bx.Model(
    log_density=jnp.sqrt,
    test_point=-1.)

bad_model.mcmc.blackjax_nuts.debug(jax.random.PRNGKey(0),
                                   verbosity=3, kwargs={"num_chains": 17})

Checking test_point shapeTest point has shape
()
✓✓✓✓✓✓✓✓✓✓

Computing test point log density ×
Test point has log density
Array(nan, dtype=float32, weak_type=True)
××××××××××

Loading keyword arguments... ✓
Keyword arguments are
{<function window_adaptation at 0x77feef9308b0>: {'algorithm': <class 'blackjax.mcmc.nuts.nuts'>,
                                                  'initial_step_size': 1.0,
                                                  'is_mass_matrix_diagonal': True,
                                                  'progress_bar': False,
                                                  'target_acceptance_rate': 0.8},
 'extra_parameters': {'chain_method': 'vectorized',
                      'num_adapt_draws': 500,
                      'num_chains': 17,
                      'num_draws': 500,
                      'return_pytree': False},
 <class 'blackjax.mcmc.nuts.nuts'>: {'divergence_threshold': 1000,
                                     'integrator': <function velocity_verlet at 0x77feefbf4b80>,
                                     'max_num_doublings': 10,
                                     'step_size': 0.01}}
✓✓✓✓✓✓✓✓✓✓

Checking it is possible to compute an initial stateInitial state has shape
(17,)
✓✓✓✓✓✓✓✓✓✓

Checking initial state is has no NaNNo nans detected!
✓✓✓✓✓✓✓✓✓✓

Computing initial state log density ×
Initial state has log density
Array([1.2212421 ,        nan,        nan, 1.4113309 ,        nan,
              nan,        nan,        nan,        nan,        nan,
       0.5912253 ,        nan,        nan,        nan, 0.65457666,
              nan,        nan], dtype=float32)
××××××××××

Transforming model to R^nTransformed state has shape
(17,)
✓✓✓✓✓✓✓✓✓✓

Computing transformed state log density shapeTransformed state log density has shape
(17,)
✓✓✓✓✓✓✓✓✓✓

Computing gradients of transformed log density ×
The gradient contains NaNs! Initial gradients has shape
(17,)
××××××××××

False

This is not an officially supported Google product.

About

State of the art inference for your bayesian models.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%