Skip to content

Commit

Permalink
Update index.md
Browse files Browse the repository at this point in the history
  • Loading branch information
fepinheiromycin authored Feb 16, 2025
1 parent 0a3ecaa commit f572979
Showing 1 changed file with 48 additions and 48 deletions.
96 changes: 48 additions & 48 deletions docs/src/04_math/index.md
Original file line number Diff line number Diff line change
Expand Up @@ -173,107 +173,107 @@ where $\mu$ is the growth rate, $N_{\text{max}}$ the total growth, $\lambda$ is

- **Piece-wise Adjusted Logistic**:

$$\frac{d N(t)}{dt} =
$\frac{d N(t)}{dt} =
\begin{cases}
\text{const.} \, N(t) & t < t_{\text{L}} \\
\mu \left( 1 - \left( \frac{N(t)}{N_{\text{max}}} \right)^m \right) \, N(t) & t \geq t_{\text{L}}
\end{cases}$$
\end{cases}$
where $\mu$ is the growth rate, $N_{\text{max}}$ the total growth, $t_\text{L}$ is the lag time, $m$ is shape constant, and $c$ the growth rate during the lag phase (can be 0).
- **Triple Piece-wise Adjusted Logistic**:

$$\frac{d N(t)}{dt} =
$\frac{d N(t)}{dt} =
\begin{cases}
c_1 \cdot N(t) & \text{for } t < t_{\text{L}}, \\
\mu \left( 1 - \left( \frac{N(t)}{N_{\text{max}}} \right)^m \right) \cdot N(t) & \text{for } t_{\text{L}} \leq t < t_{\text{stat}}, \\
c_2 \cdot N(t) & \text{for } t \geq t_{\text{stat}},
\end{cases}$$
\end{cases}$

where $\mu$ is the growth rate, $N_{\text{max}}$ the total growth, $t_\text{L}$ is the lag time, $m$ is a shape constant, $c_1$ the growth rate during the lag phase (can be 0), $t_{\text{stat}} $ the time when stationary phase starts, and $c_2$ the growth rate during the stationary phase.
- **Triple Piece-wise**:

$$\frac{d N(t)}{dt} =
$\frac{d N(t)}{dt} =
\begin{cases}
c_1 \cdot N(t) & \text{for } t < t_{\text{L}}, \\
\mu \cdot N(t) & \text{for } t_{\text{L}} \leq t < t_{\text{stat}},\\
c_2 \cdot \left(1 - \log \left( \frac{N(t)}{N_{\text{max}}} \right)\right) & \text{for } t \geq t_{\text{stat}},
\end{cases}$$
\end{cases}$

where $\mu$ is the growth rate, $N_{\text{max}}$ the total growth, $t_\text{L}$ is the lag time, $c_1$ the growth rate during the lag phase (can be 0), $t_{\text{stat}} $ the time when stationary phase starts, and $c_2$ the growth rate during the stationary phase.

- **Triple Piece-wise Exponential**:

$$\frac{d N(t)}{dt} =
$\frac{d N(t)}{dt} =
\begin{cases}
c_1 \cdot N(t) & \text{for } t < t_{\text{L}}, \\
\mu \cdot N(t) & \text{for } t_{\text{L}} \leq t < t_{\text{stat}}, \\
c_2 \cdot N(t) & \text{for } t \geq t_{\text{stat}},
\end{cases}$$
\end{cases}$

where $\mu$ is the growth rate, $N_{\text{max}}$ the total growth, $t_\text{L}$ is the lag time, $c_1$ the growth rate during the lag phase (can be 0), $t_{\text{stat}} $ the time when stationary phase starts, and $c_2$ the growth rate during the stationary phase.
- **Four Piece-wise Exponential**:

$$\frac{d N(t)}{dt} =
$\frac{d N(t)}{dt} =
\begin{cases}
c_1 \cdot N(t) & \text{for } t < t_1, \\
\mu \cdot N(t) & \text{for } t_1 \leq t < t_2, \\
c_2 \cdot N(t) & \text{for } t_2 \leq t < t_3,\\
c_3 \cdot N(t) & \text{for } t \geq t_3,
\end{cases}$$
\end{cases}$

where $\mu$ is the growth rate, $N_{\text{max}}$ the total growth, $t_1$ is the lag time, $c_1$ the growth rate during the lag phase (can be 0), $t_2 $ the time when growth occurs after the exponential phase, $c_2$ the growth rate during this phase, $t_3$ the start of stationary phase and, $c_3$ the growth rate during the stationary phase.

- **Heterogeneous Population Model (HPM)**:
$$\begin{cases}
$\begin{cases}
N(t) = N_1(t) + N_2(t), \\
\frac{d N_1(t)}{dt} = - r_{\text{L}} \cdot N_1(t), \\
\frac{d N_2(t)}{dt} = r_{\text{L}} \cdot N_1(t) + \mu \cdot N_2(t) \cdot \left(1 - \frac{N_1(t) + N_2(t)}{N_{\text{max}}}\right),
\end{cases}$$
\end{cases}$

where $\mu$ is the growth rate, $N_{\text{max}}$ the total growth, and $r_\text{L}$ is the lag rate (i.e. the rate of transition between $N_1(t)$ and $N_2(t)$).
Note that these models assume that the cells are in two states: $N_1(t)$ dormant cells (the cells are not able to reproduce because they are in the lag phase) and $N_2(t)$ active cells, which are able to duplicate. At the start, all the cells are assumed in the dormant state (i.e., $N_{1}(start) = OD(start)$, and $N_{2}(start) = 0.0$) .

- **Exponential Heterogeneous Population Model**:

$$\begin{cases}
$\begin{cases}
N(t) = N_1(t) + N_2(t) \\
\frac{d N_1(t)}{dt} = - \text{r}_{\text{L}} \, N_1(t) \\
\frac{d N_2(t)}{dt} = \text{r}_{\text{L}} \, N_1(t) + \mu \, N_2(t)
\end{cases}$$
\end{cases}$

where similarly to the HPM model, $N_1$ and $N_2$ refer to the populations of dormant and active cells, respectively. $\mu$ is the growth rate, and the lag rate $r_\text{L}$ denotes the transition between the $N_1$ and $N_2$ populations. Here, we also assume that all cells are in the dormant state at the start (i.e., $N_{1}(t = 0) = \text{OD}(t = 0)$, and $N_{2}(t = 0) = 0$).


- **Adjusted Heterogeneous Population Model**:

$$\begin{cases}
$\begin{cases}
N(t) = N_1(t) + N_2(t), \\
\frac{d N_1(t)}{dt} = - r_{\text{L}} \cdot N_1(t), \\
\frac{d N_2(t)}{dt} = r_{\text{L}} \cdot N_1(t) + \mu \cdot N_2(t) \cdot \left(1 - \left(\frac{N_1(t) + N_2(t)}{N_{\text{max}}}\right)^m \right),
\end{cases}$$
\end{cases}$

where $\mu$ is the growth rate, and $N_{\text{max}}$ the total growth.
Note that these models assume that the cells are in two states: $N_1(t)$ dormant cells (the cells are not able to reproduce because they are in the lag phase) and $N_2(t)$ active cells, which are able to duplicate.At the start, all the cells are assumed in the dormant state (i.e., $N_{1}(start) = OD(start)$, and $N_{2}(start) = 0.0$) .

- **Heterogeneous Population Model with Inhibition**:

$$\begin{cases}
$\begin{cases}
N(t) = N_1(t) + N_2(t)+ N_3(t) \\
\frac{d N_1(t)}{dt} = - r_{\text{L}} \cdot N_1(t) \\
\frac{d N_2(t)}{dt} = r_{\text{L}} \cdot N_1(t) - r_{\text{I}} \cdot N_2(t)\\
\frac{d N_3(t)}{dt} = r_{\text{I}} \cdot N_2(t)
\end{cases}$$
\end{cases}$


where $\mu$ is the growth rate, $N_{\text{max}}$ the total growth, $r_\text{L}$ is the lag rate (i.e. the rate of transition between $N_1(t)$ and $N_2(t)$) and $r_{\text{I}}$ is a shape constant.
Note that these models assume that the cells are in two states: $N_1(t)$ dormant cells (the cells are not able to reproduce because they are in the lag phase), $N_2(t)$ active cells, which are able to duplicate, and inactive cells $N_3(t)$. At the start, all the cells are assumed in the dormant state (i.e., $N_{1}(\text{start}) = OD(\text{start})$, $N_{2}(\text{start}) = 0.0$, and $N_{3}(\text{start}) = 0.0$).

- **Heterogeneous Population Model with Inhibition and Death**:

$$\begin{cases} N(t) = N_1(t) + N_2(t) + N_3(t), \\
$\begin{cases} N(t) = N_1(t) + N_2(t) + N_3(t), \\
\frac{d N_1(t)}{dt} = - r_{\text{L}} \cdot N_1(t), \\
\frac{d N_2(t)}{dt} = r_{\text{L}} \cdot N_1(t) + \mu \cdot N_2(t) - r_{\text{I}} \cdot N_2(t), \\
\frac{d N_3(t)}{dt} = - r_{\text{D}} \cdot N_3(t) + r_{\text{I}} \cdot N_2(t),
\end{cases}$$
\end{cases}$

where $\mu$ is the growth rate, $r_\text{L}$ is the lag rate (i.e. the rate of transition between $N_1(t)$ and $N_2(t)$) , $r_\text{inhibition}$ is the rate at which cell are inhibited (i.e. the rate of transition between $N_2(t)$ and $N_3(t)$), and $r_{\text{D}}$ is the rate at which cell are die.

Expand All @@ -282,12 +282,12 @@ Note that these models assume that the cells are in three states: $N_1(t)$ dorma

- **Heterogeneous Population Model with Inhibition, Death and Resistance**:

$$\begin{cases}
$\begin{cases}
N(t) = N_1(t) + N_2(t) + N_3(t), \\
\frac{d N_1(t)}{dt} = - r_{\text{L}} \cdot N_1(t), \\
\frac{d N_2(t)}{dt} = r_{\text{L}} \cdot N_1(t) + \mu \cdot N_2(t) - r_{\text{I}} \cdot N_2(t), \\
\frac{d N_3(t)}{dt} = - r_{\text{D}} \cdot N_3(t) \left(1 - \frac{N_3(t)}{N_{\text{res}}}\right) + r_{\text{I}} \cdot N_2(t), \quad \text{with} \quad N_3(t) \leq N_{\text{res}}
\end{cases}$$
\end{cases}$

where $\mu$ is the growth rate, $r_\text{L}$ is the lag rate (i.e. the rate of transition between $N_1(t)$ and $N_2(t)$) , $r_\text{inhibition}$ is the rate at which cell are inhibited (i.e. the rate of transition between $N_2(t)$ and $N_3(t)$), $r_{\text{D}}$ is the rate at which cell are die, and $N_{\text{res}}$ it the number of cells that will be inactive but do not die.

Expand Down Expand Up @@ -326,7 +326,7 @@ To call these models use the string present in this table, the parameters will b
In the following table, you can find a general description of the properties of the hardcoded ODE models of Kinbiont:


| **Model Name** | ** Does it have a lag?** | **Is it piecewise?** | **Does it have a stationary phase?** | ** Does have inhibition?** | **Is it monotonic?** | **Does it assume multiple states?** |
| **Model Name** | **Does it have a lag?** | **Is it piecewise?** | **Does it have a stationary phase?** | **Does have inhibition?** | **Is it monotonic?** | **Does it assume multiple states?** |
|----------------------------------------------|-------------|------------------|--------------------------|-------------------|----------------|----------------------------|
| Exponential ODE | No | No | No | No | Yes | No |
| Hyper Gompertz | No | No | Yes | No | Yes | No |
Expand Down Expand Up @@ -404,96 +404,96 @@ $\mu(N;N_\text{max},\mu_\text{max}) = \displaystyle{\mu_\text{max} \left(1-\fra
In this section, we present some examples of ODEs multidimensional system hardcoded in Kinbiont. Note that these are just examples since you can define custom models:

- **SIR Model** (Susceptible-Infected-Recovered)
$$\begin{cases}
$\begin{cases}
\frac{dS}{dt} = -\beta S I \\
\frac{dI}{dt} = \beta S I - \gamma I \\
\frac{dR}{dt} = \gamma I
\end{cases}$$
\end{cases}$
Parameters: Infection rate ($\beta$), Recovery rate ($\gamma$).

- **SIR with Birth and Death (SIR_BD)**
$$\begin{cases}
$\begin{cases}
\frac{dS}{dt} = -\beta S I + b S - d S \\
\frac{dI}{dt} = \beta S I - \gamma I - d I \\
\frac{dR}{dt} = \gamma I - d R
\end{cases}$$
\end{cases}$
Parameters: Infection rate ($\beta$), Recovery rate ($\gamma$), Birth rate ($b$), Death rate ($d$).

- **SIS Model** (Susceptible-Infected-Susceptible)
$$\begin{cases}
$\begin{cases}
\frac{dS}{dt} = -\beta S I + \gamma I \\
\frac{dI}{dt} = \beta S I - \gamma I
\end{cases}$$
\end{cases}$
Parameters: Infection rate ($\beta$), Recovery rate ($\gamma$).

- **Lotka-Volterra Predator-Prey Model**
$$\begin{cases}
$\begin{cases}
\frac{dP}{dt} = \alpha P - \beta P C \\
\frac{dC}{dt} = -\delta C + \gamma C P
\end{cases}$$
\end{cases}$
Parameters: Prey birth rate ($\alpha$), Predation rate ($\beta$), Predator death rate ($\delta$), Predator reproduction rate ($\gamma$).

- **Lotka-Volterra with Substrate Limitation**
$$\begin{cases}
$\begin{cases}
\frac{dP}{dt} = \alpha P \frac{S}{S + K} - \beta P C \\
\frac{dC}{dt} = -\delta C + \gamma C P \\
\frac{dS}{dt} = -\alpha P \frac{S}{S + K}
\end{cases}$$
\end{cases}$
Parameters: Growth rate ($\alpha$), Half-saturation ($K$), Predation rate ($\beta$), Predator mortality ($\delta$), Predator efficiency ($\gamma$).

- **Monod Chemostat Model** (Microbial Growth in a Chemostat)
$$\begin{cases}
$\begin{cases}
\frac{dX}{dt} = \mu X - D X \\
\frac{dS}{dt} = D (S_{\text{in}} - S) - \frac{\mu X}{Y} - m X
\end{cases}$$
\end{cases}$
where
$$\mu = \mu_m \frac{S}{K_s + S}$$
$\mu = \mu_m \frac{S}{K_s + S}$
Parameters: Substrate affinity ($K_s$), Maintenance coefficient ($m$), Yield coefficient ($Y$), Max growth rate ($\mu_m$), Dilution rate ($D$), Substrate inflow ($S_{\text{in}}$).

- **Droop Model** (Nutrient Quota Model)
$$\begin{cases}
$\begin{cases}
\frac{dX}{dt} = \mu X - D X \\
\frac{dS}{dt} = \rho X - D S + D S_{\text{in}} \\
\frac{dQ}{dt} = \rho - \mu Q
\end{cases}$$
\end{cases}$
where
$$\mu = \mu_m \left(1 - \frac{Q_0}{Q}\right)$$
$\mu = \mu_m \left(1 - \frac{Q_0}{Q}\right)$
and
$$\rho = \rho_m \frac{S}{K_s + S}$$
$\rho = \rho_m \frac{S}{K_s + S}$
Parameters: Growth rate ($\mu_m$), Nutrient uptake rate ($\rho_m$), Half-saturation ($K_s$), Dilution rate ($D$), Minimum quota ($Q_0$), Substrate inflow ($S_{\text{in}}$).

- **Synthetic Chemostat Model** (Including Biological Inertia)
$$\begin{cases}
$\begin{cases}
\frac{dx}{dt} = Y q_s - a_0 r x - D x \\
\frac{ds}{dt} = D (s_r - s) - q_s x \\
\frac{dr}{dt} = (Y q_s - a_0 r) \left(\frac{s}{K_r + s} - r\right)
\end{cases}$$
\end{cases}$
where
$$q_s = r \frac{Q_s K_s}{K_s + s} + (1 - r) \frac{Q_s' K_s'}{K_s' + s}$$
$q_s = r \frac{Q_s K_s}{K_s + s} + (1 - r) \frac{Q_s' K_s'}{K_s' + s}$
Parameters: Yield ($Y$), Biological inertia ($a_0$), Dilution rate ($D$), Nutrient uptake coefficients ($Q_s, Q_s'$), Saturation constants ($K_s, K_s'$), Half-saturation constant for $r$($K_r$).

- **Monod-Ierusalimsky**
This model describes microbial growth, substrate consumption, and product formation using Monod-Ierusalimsky kinetics.


The specific growth rate $\mu$ follows the Monod-Ierusalimsky kinetics:
$$\mu = \mu_m \cdot \frac{s}{K_s + s} \cdot \frac{K_p}{K_p + p}$$
$\mu = \mu_m \cdot \frac{s}{K_s + s} \cdot \frac{K_p}{K_p + p}$
where:
- The first fraction represents substrate-limited growth (Monod equation).
- The second fraction accounts for product inhibition (Ierusalimsky modification).

The effective biomass yield is given by:
$$Y = \frac{Y_{max} \cdot D}{D + m \cdot Y_{max}}$$
$Y = \frac{Y_{max} \cdot D}{D + m \cdot Y_{max}}$

Finally, the System Dynamics is specified by:

$$\frac{dx}{dt} = \mu x - D x$$
$\frac{dx}{dt} = \mu x - D x$

where $\mu x$ represents microbial growth, and $-D x$ accounts for biomass washout due to dilution.

$$\frac{ds}{dt} = D (s_r - s) - \frac{\mu x}{Y} - m x$$
$\frac{ds}{dt} = D (s_r - s) - \frac{\mu x}{Y} - m x$

$$\frac{dp}{dt} = Y_p \mu x - D p$$
$\frac{dp}{dt} = Y_p \mu x - D p$

where $Y_p$ is the product yield coefficient, and $-D p$ accounts for product washout.

Expand Down

0 comments on commit f572979

Please sign in to comment.