This package provides seamless integration between Django REST framework and Datatables.
Install django-rest-framework-datatables, call your API with ?format=datatables
and it will return a JSON structure that is fully compatible with what Datatables expects.
It handles searching, filtering, ordering and most usecases you can imagine with Datatables.
The great benefit of django-rest-framework-datatables is that you don't have to create a different API, your API still work exactly the same unless you specify the datatables
format on your request.
Full documentation is available on Read the Docs !
You can play with a demo of the example app on Python Anywhere.
- Python (3.7, 3.8, 3.9)
- Django (2.0, 2.1, 2.2, 3.0, 3.1, 3.2, 4.0)
- Django REST Framework (3.7, 3.8, 3.9, 3.10, 3.11, 3.12)
Please note:
- Django 3.X branch is only supported with Django REST Framework 3.11 or superior and DRF-datatables version 0.5.1 or superior.
- Django 4.X branch is only supported with Django REST Framework 3.12 or superior and DRF-datatables version 0.7.0 or superior.
Just use pip
:
$ pip install djangorestframework-datatables
To enable Datatables support in your project, add 'rest_framework_datatables'
to your INSTALLED_APPS
, and modify your REST_FRAMEWORK
settings like this:
REST_FRAMEWORK = {
'DEFAULT_RENDERER_CLASSES': (
'rest_framework.renderers.JSONRenderer',
'rest_framework.renderers.BrowsableAPIRenderer',
'rest_framework_datatables.renderers.DatatablesRenderer',
),
'DEFAULT_FILTER_BACKENDS': (
'rest_framework_datatables.filters.DatatablesFilterBackend',
),
'DEFAULT_PAGINATION_CLASS': 'rest_framework_datatables.pagination.DatatablesPageNumberPagination',
'PAGE_SIZE': 50,
}
Your API is now fully compatible with Datatables and will provide searching, filtering, ordering and pagination without any modification of your API code !
Sometimes you may want to expose fields regardless of datatable's url parameters. You can do so by setting the datatables_always_serialize
tuple like so:
class ArtistSerializer(serializers.ModelSerializer):
id = serializers.IntegerField(read_only=True)
class Meta:
model = Artist
fields = (
'id', 'name',
)
datatables_always_serialize = ('id',)
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Rolling Stone Top 500 albums of all time</title>
<link rel="stylesheet" href="//cdnjs.cloudflare.com/ajax/libs/twitter-bootstrap/4.0.0/css/bootstrap.css">
<link rel="stylesheet" href="//cdn.datatables.net/1.10.16/css/dataTables.bootstrap4.min.css">
</head>
<body>
<div class="container">
<div class="row">
<div class="col-sm-12">
<table id="albums" class="table table-striped table-bordered" style="width:100%">
<thead>
<tr>
<th>Rank</th>
<th>Artist</th>
<th>Album name</th>
<th>Year</th>
<th>Genres</th>
</tr>
</thead>
</table>
</div>
</div>
</div>
<script src="//code.jquery.com/jquery-1.12.4.js"></script>
<script src="//cdn.datatables.net/1.10.16/js/jquery.dataTables.min.js"></script>
<script src="//cdn.datatables.net/1.10.16/js/dataTables.bootstrap4.min.js"></script>
<script>
$(document).ready(function() {
var table = $('#albums').DataTable({
"serverSide": true,
"ajax": "/api/albums/?format=datatables",
"columns": [
{"data": "rank", "searchable": false},
{"data": "artist_name", "name": "artist.name"},
{"data": "name"},
{"data": "year"},
{"data": "genres", "name": "genres.name", "sortable": false},
]
});
});
</script>
</body>
</html>
To play with the example project, just clone the repository and run the dev server.
$ git clone https://github.com/izimobil/django-rest-framework-datatables.git
$ cd django-rest-framework-datatables
$ pip install -r requirements-dev.txt
$ python example/manage.py runserver
$ firefox http://127.0.0.1:8000
Install development requirements.
$ pip install -r requirements-dev.txt
Run the tests.
$ python example/manage.py test
You can also use the excellent tox testing tool to run the tests against all supported versions of Python and Django. Install tox globally, and then simply run:
$ tox
If you want to check the coverage, use:
$ coverage run ./example/manage.py test
$ coverage report -m
The documentation is available online on Read the Docs.
To build the documentation, you’ll need to install sphinx
.
$ pip install -r requirements-docs.txt
To build the documentation:
$ cd docs
$ make clean && make build