Skip to content

Commit

Permalink
update (#39)
Browse files Browse the repository at this point in the history
Co-authored-by: hong.wang <[email protected]>
  • Loading branch information
hwang-ustc and hong.wang authored Apr 21, 2023
1 parent 844e6f3 commit 92121d5
Show file tree
Hide file tree
Showing 359 changed files with 20,683 additions and 6,515 deletions.
16 changes: 12 additions & 4 deletions .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -106,19 +106,27 @@ tmp/
.DS_Store

# dataset
/dataset
*.csv
*.npz
*.npy
/dataset
*.meta
*.html
.*

# model
*.pt
checkpoints/
.vscode/
.ssh/
.vscode-server/
.ray/
.cache/
.bash_history
.gitconfig
cache/.DS_Store
logs/
examples/naive_horizontal_resnet/data/
python/tree_structure
python/tree_structure.png
_book/
node_modules/
docs/zh_CN/build/
docs/en/build/
15 changes: 9 additions & 6 deletions README.md
Original file line number Diff line number Diff line change
@@ -1,6 +1,8 @@
### [中文](./README_zh.md)

[![License](https://img.shields.io/github/license/paritybit-ai/XFL)](https://opensource.org/licenses/Apache-2.0)
[![Documentation Status](https://readthedocs.org/projects/xfl/badge/?version=latest)](https://xfl.readthedocs.io/en/latest/?badge=latest)

[![coverage report](https://git.basebit.me/bag1/federated-learning/badges/master/coverage.svg)](https://git.basebit.me/bag1/federated-learning/-/commits/master)

XFL is a high-performance, high-flexibility, high-applicability, lightweight, open and easy-to-use Federated Learning framework.
It supports a variety of federation models in both horizontal and vertical federation scenarios.
Expand All @@ -13,14 +15,14 @@ and applies secure communication protocols to ensure communication security.
- High-performance algorithm library

- Comprehensive algorithms: support a variety of mainstream horizontal/vertical federation algorithms.
- Excellent performance: significantly exceeds the average performance of federated learning products.
- Excellent performance: significantly exceeds the average performace of federated learning products.
- Network optimization: adapt to high latency, frequent packet loss, and unstable network environments.

- Flexible deployment

- Parties: support two-party/multi-party federated learning.
- Schedulering: any participant can act as a task scheduler.
- Hardware: support CPU/GPU/hybrid deployment.
- parties: support two-party/multi-party federated learning.
- schedulering: any participant can act as a task scheduler.
- hardware: support CPU/GPU/hybrid deployment.

- Lightweight, open and easy to use:

Expand Down Expand Up @@ -65,9 +67,10 @@ sh run.sh
```

- [Quick Start](./docs/en/source/tutorial/usage.md)
# Document

# Document
- [Document](https://xfl.readthedocs.io/en/latest)

## Tutorial
- [Introduction](./docs/en/source/tutorial/introduction.md)

Expand Down
45 changes: 45 additions & 0 deletions README_zh.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,45 @@
### [English](./README.md)

[![License](https://img.shields.io/github/license/paritybit-ai/XFL)](https://opensource.org/licenses/Apache-2.0)
[![Documentation Status](https://readthedocs.org/projects/xfl/badge/?version=latest)](https://xfl.readthedocs.io/en/latest/?badge=latest)
[![coverage report](https://git.basebit.me/bag1/federated-learning/badges/master/coverage.svg)](https://git.basebit.me/bag1/federated-learning/-/commits/master)

XFL是一个高性能、高灵活度、高适用性、轻量开放的联邦学习框架,支持横向联邦、纵向联邦等多种联邦模型,运用同态加密、差分隐私、多方安全计算等多种加密计算技术保护用户的原始数据不被泄露,使用安全通信协议保护通信安全,使用户在合法合规的基础上进行联合建模,实现数据价值。

# 项目特点
- 高性能的算法库

- 算法全面:支持多种主流横向/纵向联邦算法
- 性能优异:性能大幅领先于信通院性能评测平均水平
- 网络优化:在弱网络、高延迟、大量丢包、较长时间断网的情况下依然可以完成训练任务

- 应用部署灵活

- 计算节点灵活: 支持两方/多方计算节点部署
- 算力调配灵活: 无论有无label,支持任何一方为发起方,支持辅助计算节点部署在任一方
- 安装部署灵活: 支持CPU/GPU/混合部署

- 轻量开放

- 轻量: 对服务器性能要求低,部分算法可在性能较差的环境下运行
- 开放:支持 Pytorch / Tensorflow 等主流机器学习框架,支持用户自定义横向模型

# [快速开始](./docs/zh_CN/source/tutorial/usage.md)

# Document
- [Document](https://xfl.readthedocs.io/en/latest)

## Tutorial
- [简介](./docs/en/source/tutorial/introduction.md)

## Algorithms
- [算法列表](./docs/en/source/algorithms/algorithms_list.rst)
- [密码算法](./docs/en/source/algorithms/cryptographic_algorithm.rst)
- [差分隐私](./docs/en/source/algorithms/differential_privacy.rst)

## Development
- [API](./docs/en/source/development/api.rst)
- [开发指南](./docs/en/source/development/algos_dev.rst)

# License
[Apache License 2.0](./LICENSE)

This file was deleted.

This file was deleted.

This file was deleted.

Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
{
"fed_info": {
"scheduler": {
"scheduler": {
"scheduler": "localhost:55001"
},
"trainer": {
Expand All @@ -14,5 +14,5 @@
"redis_server": "localhost:6379",
"grpc": {
"use_tls": false
}
}
}
Original file line number Diff line number Diff line change
Expand Up @@ -2,18 +2,24 @@
{
"identity": "assist_trainer",
"model_info": {
"name": "horizontal_poisson_regression",
"name": "horizontal_gcn_mol",
"config": {
"input_dim": 3,
"bias": true
"input_dim": 74,
"num_gnn_layers": 1,
"gnn_hidden_feats": 256,
"activation": "relu",
"dropout": 0.001,
"predictor_hidden_feats": 512,
"batchnorm": false,
"residual": false
}
},
"input": {
"valset": [
{
"type": "csv",
"path": "./dataset/arizona_card_hos",
"name": "ari_card_hos_test.csv",
"path": "./dataset/hiv/2party",
"name": "hiv_test.csv",
"has_label": true,
"has_id": false
}
Expand All @@ -24,7 +30,7 @@
"model": {
"type": "file",
"path": "/opt/checkpoints/[JOB_ID]/[NODE_ID]",
"name": "horizontal_poisson_regression.pt"
"name": "horizontal_resnet.pt"
},
"metrics": {
"type": "csv",
Expand All @@ -40,17 +46,17 @@
"train_info": {
"device": "cpu",
"interaction_params": {
"save_frequency": -1,
"save_frequency": 2,
"save_probabilities": true,
"save_probabilities_bins_number": 10,
"write_training_prediction": true,
"write_validation_prediction": true,
"echo_training_metrics": true
},
"params": {
"global_epoch": 30,
"global_epoch": 50,
"local_epoch": 1,
"batch_size": 32,
"batch_size": 128,
"aggregation_config": {
"type": "fedavg",
"encryption": {
Expand All @@ -68,12 +74,16 @@
}
},
"lossfunc_config": {
"PoissonNLLLoss": {
"log_input": false
}
"BCEWithLogitsLoss": {}
},
"metric_config": {
"mean_poisson_deviance": {}
"accuracy": {},
"roc_auc_score": {}
},
"early_stopping": {
"key": "acc",
"patience": 2,
"delta": 0
},
"extra_config": {}
}
Expand Down
Loading

0 comments on commit 92121d5

Please sign in to comment.