python scripts/train_fingerspelling5_litcli.py fit --config configs/train_fingerspelling5.yaml
Simply use training data for prediction:
python scripts/train_fingerspelling5_litcli.py predict \
--return_predictions true \
--ckpt_path lightning_logs/version_22/checkpoints/epoch\=17-step\=36.ckpt \
--config lightning_logs/version_22/config.yaml
Overwrite datamodule to use other input (and practice overwriting :P):
python scripts/train_fingerspelling5_litcli.py predict \
--config lightning_logs/version_22/config.yaml \
--config configs/predict_fingerspelling5.yaml \
--ckpt_path lightning_logs/version_22/checkpoints/epoch=17-step=36.ckpt
python scripts/compute_fingerspelling5_metrics.py predict \
--config configs/metric_computation.yaml
Create random dummy data which matches fingerspelling5 + mediapipe hand landmark dataset properties.
python scripts/create_fingerspelling5_dummy.py \
--dir-dest=data/fingerspelling5 \
--dataset-name=fingerspelling5_dummy \
--num-persons=3 \
--num-samples=4
Grouped N-fold split using fingerspelling5 persons as group.
python scripts/create_fingerspelling5_splits.py \
--dataset-dir=data/fingerspelling5/fingerspelling5_dummy
For actual fingerspelling5 dataset manual labeling can be performed using the following script.
Create fake label to test or play with pipeline:
python scripts/create_fingerspelling5_dummy_dataquality.py \
--dataset-dir=data/fingerspelling/fingerspelling_dummy
Compute metrics scaled data.
python scripts/compute_fingerspelling5_metrics.py predict \
--config configs/examples/fingerspelling5_dummy_metrics_scaled.yaml
Compute metrics for 'raw' recorded data.
python scripts/compute_fingerspelling5_metrics.py predict \
--config configs/examples/fingerspelling5_dummy_metrics_unscaled.yaml
python scripts/train_fingerspelling5_litcli.py fit \
--config configs/examples/fingerspelling5_dummy_training.yaml
(Currently I'm not happy with the way how prediction is called(input args etc; (previous) train config + (current) pred config + model ckpt)) (too much redundancy?)
python scripts/train_fingerspelling5_litcli.py predict \
--config logs/examples/version_0/config.yaml \
--config configs/examples/fingerspelling5_dummy_prediction.yaml \
--ckpt_path logs/examples/version_0/checkpoints/epoch=8-step=9.ckpt
python pipelines/fingerspelling5/create_dummy_data.py
python pipelines/fingerspelling5/compute_metrics.py \
--dataset-path data/fingerspelling5_dummy/ \
--output-path metrics/
python pipelies/fingerspelling5/train_eval.py \
--train-config configs/examples/fingerspelling5_dummy_training.yaml \
--predict-config configs/examples/fingerspelling5_dummy_prediction.yaml