-
Notifications
You must be signed in to change notification settings - Fork 58
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Tool to modify torchlib overload names via libcst #920
Open
BowenBao
wants to merge
6
commits into
main
Choose a base branch
from
gh/BowenBao/7/head
base: main
Could not load branches
Branch not found: {{ refName }}
Loading
Could not load tags
Nothing to show
Loading
Are you sure you want to change the base?
Some commits from the old base branch may be removed from the timeline,
and old review comments may become outdated.
Open
Changes from all commits
Commits
Show all changes
6 commits
Select commit
Hold shift + click to select a range
3580a96
Add overlooked overload information on torchlib functions
BowenBao 8e3e9b2
Tool to modify torchlib overload names via libcst
BowenBao b88388a
Update base for Update on "Tool to modify torchlib overload names via…
BowenBao c2577eb
Update on "Tool to modify torchlib overload names via libcst"
BowenBao 3521a1a
Update base for Update on "Tool to modify torchlib overload names via…
BowenBao 572112b
Update on "Tool to modify torchlib overload names via libcst"
BowenBao File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
214 changes: 214 additions & 0 deletions
214
onnxscript/function_libs/tools/torch_lib/modify_overload_names.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,214 @@ | ||
from __future__ import annotations | ||
|
||
import enum | ||
import os | ||
import pathlib | ||
import pprint | ||
from typing import Dict, List, Set, Tuple | ||
|
||
import libcst as cst | ||
from libcst import matchers | ||
from libcst._nodes.statement import FunctionDef | ||
|
||
from onnxscript.function_libs.torch_lib import registration | ||
|
||
|
||
class _StatusEnum(enum.Enum): | ||
SUCCESS = enum.auto() | ||
"""Success.""" | ||
FAILURE_OVERLOAD_EXIST = enum.auto() | ||
"""Failure: overload name already exists.""" | ||
FAILURE_OVERLOAD_INVALID = enum.auto() | ||
"""Failure: overload name is invalid.""" | ||
FAILURE_OP_NOT_FOUND = enum.auto() | ||
"""Failure: op not found.""" | ||
FAILURE_OP_MULTIPLE_IMPL = enum.auto() | ||
"""Failure: op has multiple implementations. Cannot decide which to add new overload name to.""" | ||
|
||
|
||
def _cst_arg_to_overload_names(arg: cst.Arg) -> Tuple[str, ...]: | ||
if matchers.matches(arg, matchers.Arg(value=matchers.SimpleString())): | ||
overload_names = (cst.ensure_type(arg.value, cst.SimpleString).value,) | ||
else: | ||
overload_names = tuple( | ||
cst.ensure_type(element.value, cst.SimpleString).value | ||
for element in cst.ensure_type(arg.value, cst.Tuple).elements | ||
) | ||
overload_names = tuple(name.replace('"', "") for name in overload_names) | ||
return overload_names | ||
|
||
|
||
def _overload_names_to_namespace_op(overload_names: Tuple[str, ...]) -> str: | ||
match = registration._QUALIFIED_OPERATOR_NAME_REGEX.fullmatch(overload_names[0]) | ||
assert match is not None | ||
namespace = match.group("namespace") | ||
name = match.group("name") | ||
return f"{namespace}::{name}" | ||
|
||
|
||
class _TorchlibOpOverloadCollector(cst.CSTVisitor): | ||
def __init__(self): | ||
self._op_overloads: Dict[str, List[Tuple[str, List[str]]]] = {} | ||
self._stack: List[str] = [] | ||
|
||
def visit_FunctionDef(self, node: FunctionDef) -> bool | None: | ||
self._stack.append(node.name.value) | ||
|
||
def leave_FunctionDef(self, node: FunctionDef) -> None: | ||
self._stack.pop() | ||
|
||
def visit_Call(self, node: cst.Call) -> None: | ||
if not matchers.matches(node.func, matchers.Name("torch_op")): | ||
return | ||
|
||
# skip private ops | ||
if any( | ||
matchers.matches( | ||
arg, | ||
matchers.Arg(value=matchers.Name("True"), keyword=matchers.Name("private")), | ||
) | ||
for arg in node.args | ||
): | ||
return | ||
|
||
function_name = self._stack[-1] | ||
overload_names = _cst_arg_to_overload_names(node.args[0]) | ||
namespace_op_name = _overload_names_to_namespace_op(overload_names) | ||
|
||
self._op_overloads.setdefault(namespace_op_name, []) | ||
self._op_overloads[namespace_op_name].append((function_name, list(overload_names))) | ||
|
||
|
||
class _TorchlibOpOverloadAdder(cst.CSTTransformer): | ||
def __init__( | ||
self, | ||
overload_names: Dict[str, List[Tuple[str, List[str]]]], | ||
new_overload_names: Set[str], | ||
): | ||
self._overload_names = overload_names | ||
self._results: Dict[str, _StatusEnum] = {} | ||
|
||
for new_overload_name in new_overload_names: | ||
match = registration._QUALIFIED_OPERATOR_NAME_REGEX.fullmatch(new_overload_name) | ||
if not match: | ||
self._results[new_overload_name] = _StatusEnum.FAILURE_OVERLOAD_INVALID | ||
continue | ||
overload = match.group("overload") or "" | ||
if overload == "default": | ||
overload = "" | ||
dot_overload = f".{overload}" if overload else "" | ||
op_name = match.group("name") | ||
namespace = match.group("namespace") | ||
namespace_op_name = f"{namespace}::{op_name}" | ||
qualified_name = f"{namespace_op_name}{dot_overload}" | ||
|
||
if namespace_op_name not in self._overload_names: | ||
self._results[new_overload_name] = _StatusEnum.FAILURE_OP_NOT_FOUND | ||
continue | ||
|
||
if len(self._overload_names[namespace_op_name]) > 1: | ||
self._results[new_overload_name] = _StatusEnum.FAILURE_OP_MULTIPLE_IMPL | ||
continue | ||
|
||
if qualified_name in self._overload_names[namespace_op_name][0][1]: | ||
self._results[new_overload_name] = _StatusEnum.FAILURE_OVERLOAD_EXIST | ||
continue | ||
|
||
self._overload_names[namespace_op_name][0][1].append(qualified_name) | ||
self._results[new_overload_name] = _StatusEnum.SUCCESS | ||
|
||
def leave_Call(self, original_node: cst.Call, updated_node: cst.Call) -> cst.Call: | ||
if not matchers.matches(original_node.func, matchers.Name("torch_op")): | ||
return original_node | ||
|
||
# skip private ops | ||
if any( | ||
matchers.matches( | ||
arg, | ||
matchers.Arg(value=matchers.Name("True"), keyword=matchers.Name("private")), | ||
) | ||
for arg in original_node.args | ||
): | ||
return original_node | ||
|
||
original_overload_names = _cst_arg_to_overload_names(original_node.args[0]) | ||
namespace_op_name = _overload_names_to_namespace_op(original_overload_names) | ||
overload_names = self._overload_names[namespace_op_name][0][1] | ||
if len(overload_names) == 1: | ||
return original_node | ||
return updated_node.with_changes( | ||
args=[ | ||
cst.Arg( | ||
value=cst.Tuple( | ||
elements=[ | ||
cst.Element(cst.SimpleString(value=f'"{name}"')) | ||
for name in overload_names | ||
] | ||
) | ||
), | ||
*original_node.args[1:], | ||
], | ||
) | ||
|
||
|
||
def add_overload_names( | ||
module_path: pathlib.Path, overload_names: Set[str] | ||
) -> Dict[str, _StatusEnum]: | ||
"""NOTE: This function assumes""" | ||
source_tree = cst.parse_module(module_path.read_text()) | ||
op_overload_collector = _TorchlibOpOverloadCollector() | ||
source_tree.visit(op_overload_collector) | ||
transformer = _TorchlibOpOverloadAdder(op_overload_collector._op_overloads, overload_names) | ||
modified_tree = source_tree.visit(transformer) | ||
module_path.write_text(modified_tree.code) | ||
return transformer._results | ||
|
||
|
||
def main(): | ||
new_overload_names_from_bench = { | ||
"aten.add.Tensor": 35510, | ||
"aten.bitwise_and.Tensor": 12, | ||
"aten.clamp.Tensor": 2690, | ||
"aten.div.Tensor": 10622, | ||
"aten.div.Tensor_mode": 2, | ||
"aten.empty.memory_format": 12486, | ||
"aten.eq.Scalar": 72, | ||
"aten.eq.Tensor": 112, | ||
"aten.fill.Tensor": 28, | ||
"aten.ge.Scalar": 4, | ||
"aten.ge.Tensor": 4, | ||
"aten.gt.Scalar": 46, | ||
"aten.le.Tensor": 32, | ||
"aten.lt.Scalar": 80, | ||
"aten.masked_fill.Scalar": 360, | ||
"aten.masked_fill.Tensor": 396, | ||
"aten.mul.Tensor": 24214, | ||
"aten.ne.Scalar": 630, | ||
"aten.pow.Tensor_Scalar": 528, | ||
"aten.pow.Tensor_Tensor": 1820, | ||
"aten.rsub.Scalar": 354, | ||
"aten.scatter_reduce.two": 18, | ||
"aten.select.int": 4669, | ||
"aten.slice.Tensor": 17717, | ||
"aten.split.Tensor": 3182, | ||
"aten.sub.Tensor": 7868, | ||
"aten.sum.dim_IntList": 6122, | ||
"aten.transpose.int": 13219, | ||
"aten.unbind.int": 1188, | ||
"aten.where.self": 732, | ||
} | ||
new_overload_names = set( | ||
{k.replace("aten.", "aten::") for k in new_overload_names_from_bench} | ||
) | ||
file_paths = [ | ||
pathlib.Path(os.path.join(root, file)) | ||
for root, dirs, files in os.walk("onnxscript/function_libs/torch_lib/ops") | ||
for file in files | ||
] | ||
for file_path in file_paths: | ||
print("Processing file:", file_path) | ||
pprint.pprint(add_overload_names(file_path, new_overload_names)) | ||
|
||
|
||
if __name__ == "__main__": | ||
main() |
Oops, something went wrong.
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
So the function def is visited before the decorator call?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
I think so, from cst tree level, decorators are a part of the function.