Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

test: Add test for ref_input parameter in fused linear preference #468

Draft
wants to merge 3 commits into
base: main
Choose a base branch
from
Draft
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
120 changes: 120 additions & 0 deletions test/chunked_loss/test_ref_input.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,120 @@
from test.utils import assert_verbose_allclose, set_seed

import pytest
import torch

from liger_kernel.chunked_loss.fused_linear_preference import (
LigerFusedLinearPreferenceBase,
)
from liger_kernel.utils import infer_device

device = infer_device()

# set random seed globally
set_seed()


@pytest.mark.parametrize(
"B, T, H, V",
[
(8, 128, 1024, 4096), # typical shape
(3, 47, 31, 123), # random shape
],
)
@pytest.mark.parametrize(
"scalar, dtype, atol, rtol",
[
(1.0, torch.bfloat16, 5e-2, 5e-1),
(1.0, torch.float32, 2e-2, 5e-1),
],
)
@pytest.mark.parametrize("bias", [True, False])
@pytest.mark.parametrize("ref_bias", [True, False])
@pytest.mark.parametrize("ignore_index, beta", [(-100, 0.1), (42, 0.2)])
def test_ref_input(
B, T, H, V, scalar, dtype, atol, rtol, bias, ref_bias, ignore_index, beta
):
"""Test that using ref_input gives different results than using input_chunk for reference model."""
B = 2 * B # requires B to be even

# Create input tensors
input_chunk = torch.randn(B, T, H, device=device, dtype=dtype) * scalar
ref_input = (
torch.randn(B, T, H, device=device, dtype=dtype) * scalar
) # Different input for reference model
target_chunk = torch.randint(0, V, (B, T), device=device, dtype=torch.long)

# Assign some random elements as ignore_index
num_elements_to_assign = torch.randint(1, B * T // 2, (1,)).item()
indices_to_assign = torch.randperm(B * T)[:num_elements_to_assign]
target_chunk.view(-1)[indices_to_assign] = ignore_index

# Create weights and biases
weight = torch.randn(V, H, device=device, dtype=dtype)
ref_weight = torch.randn(V, H, device=device, dtype=dtype)
_bias = torch.randn(V, device=device, dtype=dtype) if bias else None
_ref_bias = torch.randn(V, device=device, dtype=dtype) if ref_bias else None

# Mock loss function that returns the difference between policy and reference logits
def mock_loss_fn(
chosen_logps,
rejected_logps,
full_target,
beta=0.1,
ref_chosen_logps=None,
ref_rejected_logps=None,
):
# Return the mean difference between policy and reference logits
diff = (chosen_logps - ref_chosen_logps).mean() + (
rejected_logps - ref_rejected_logps
).mean()
return diff, (diff,) # Return an aux output to test that too

# Forward pass without ref_input (using input_chunk for reference model)
outputs1 = LigerFusedLinearPreferenceBase._compute_loss(
input_chunk=input_chunk,
weight=weight,
target_chunk=target_chunk,
bias=_bias,
preference_loss_fn=mock_loss_fn,
full_target=target_chunk,
ignore_index=ignore_index,
alpha=1.0,
beta=beta,
compute_nll_loss=True,
use_ref_model=True,
ref_weight=ref_weight,
ref_bias=_ref_bias,
)

# Forward pass with ref_input
outputs2 = LigerFusedLinearPreferenceBase._compute_loss(
input_chunk=input_chunk,
weight=weight,
target_chunk=target_chunk,
bias=_bias,
preference_loss_fn=mock_loss_fn,
full_target=target_chunk,
ignore_index=ignore_index,
alpha=1.0,
beta=beta,
compute_nll_loss=True,
use_ref_model=True,
ref_weight=ref_weight,
ref_bias=_ref_bias,
ref_input=ref_input, # Use different input for reference model
)

# The outputs should be different since we used different inputs
loss1, (chosen_logps1, rejected_logps1, _, _, _, aux1) = outputs1
loss2, (chosen_logps2, rejected_logps2, _, _, _, aux2) = outputs2

# The chosen/rejected logps from the policy model should be identical
assert_verbose_allclose(chosen_logps1, chosen_logps2, atol=atol, rtol=rtol)
assert_verbose_allclose(rejected_logps1, rejected_logps2, atol=atol, rtol=rtol)

# But the losses and aux outputs should be different since ref_input is different
with pytest.raises(AssertionError):
assert_verbose_allclose(loss1, loss2, atol=atol, rtol=rtol)
with pytest.raises(AssertionError):
assert_verbose_allclose(aux1, aux2, atol=atol, rtol=rtol)
Loading