-
Notifications
You must be signed in to change notification settings - Fork 605
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
test: add test for impure function correlation behavior
Need to fix the UDF test case. Related to #8921, trying to write down exactly what the expected behavior is.
- Loading branch information
Showing
1 changed file
with
83 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,83 @@ | ||
from __future__ import annotations | ||
|
||
import random | ||
|
||
import pandas.testing as tm | ||
import pytest | ||
|
||
import ibis | ||
from ibis import _ | ||
|
||
|
||
@ibis.udf.scalar.python(side_effects=True) | ||
def my_random(x: float) -> float: | ||
return random.random() | ||
|
||
|
||
mark_impures = pytest.mark.parametrize( | ||
"impure", | ||
[ | ||
pytest.param( | ||
lambda _: ibis.random(), | ||
id="random", | ||
), | ||
pytest.param( | ||
lambda _: ibis.uuid().cast(str).contains("a").cast(float), | ||
id="uuid", | ||
), | ||
pytest.param( | ||
lambda table: my_random(table.float_col), | ||
id="udf", | ||
), | ||
], | ||
) | ||
|
||
|
||
@mark_impures | ||
def test_impure_correlated(alltypes, impure): | ||
df = ( | ||
alltypes.select(common=impure(alltypes)) | ||
.select(x=_.common, y=_.common) | ||
.execute() | ||
) | ||
tm.assert_series_equal(df.x, df.y, check_names=False) | ||
|
||
|
||
@mark_impures | ||
def test_chained_selections(alltypes, impure): | ||
# https://github.com/ibis-project/ibis/issues/8921#issue-2234327722 | ||
t = alltypes.mutate(num=impure(alltypes)) | ||
t = t.mutate(isbig=(t.num > 0.5)) | ||
df = t.select("num", "isbig").execute() | ||
df["expected"] = df.num > 0.5 | ||
tm.assert_series_equal(df.isbig, df.expected, check_names=False) | ||
|
||
|
||
@pytest.mark.parametrize( | ||
"impure", | ||
[ | ||
pytest.param( | ||
lambda _: ibis.random(), | ||
id="random", | ||
), | ||
pytest.param( | ||
# make this a float so we can compare to .5 | ||
lambda _: ibis.uuid().cast(str).contains("a").cast(float), | ||
id="uuid", | ||
), | ||
pytest.param( | ||
lambda table: my_random(table.float_col), | ||
id="udf", | ||
# once this is fixed, can we unify these params with the params below? | ||
marks=pytest.mark.xfail(reason="executed only once"), | ||
), | ||
], | ||
) | ||
def test_impure_uncorrelated(alltypes, impure): | ||
df = alltypes.select(x=impure(alltypes), y=impure(alltypes)).execute() | ||
assert (df.x == df.y).mean() < 1 | ||
# Even if the two expressions have the exact same ID, they should still be | ||
# uncorrelated | ||
common = impure(alltypes) | ||
df = alltypes.select(x=common, y=common).execute() | ||
assert (df.x == df.y).mean() < 1 |