-
Notifications
You must be signed in to change notification settings - Fork 486
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #172 from cloneofsimo/feat/mutilora-context-manager
LoRA Manager for managing multiple loras with different scaling parameters & tokens
- Loading branch information
Showing
4 changed files
with
136 additions
and
52 deletions.
There are no files selected for viewing
Binary file not shown.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -2,3 +2,4 @@ | |
from .dataset import * | ||
from .utils import * | ||
from .preprocess_files import * | ||
from .lora_manager import * |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,134 @@ | ||
from typing import List | ||
import torch | ||
from safetensors import safe_open | ||
from diffusers import StableDiffusionPipeline | ||
from .lora import ( | ||
monkeypatch_or_replace_safeloras, | ||
apply_learned_embed_in_clip, | ||
set_lora_diag, | ||
parse_safeloras_embeds, | ||
) | ||
|
||
|
||
def lora_join(lora_safetenors: list): | ||
metadatas = [dict(safelora.metadata()) for safelora in lora_safetenors] | ||
total_metadata = {} | ||
total_tensor = {} | ||
total_rank = 0 | ||
ranklist = [] | ||
for _metadata in metadatas: | ||
rankset = [] | ||
for k, v in _metadata.items(): | ||
if k.endswith("rank"): | ||
rankset.append(int(v)) | ||
|
||
assert len(set(rankset)) == 1, "Rank should be the same per model" | ||
total_rank += rankset[0] | ||
total_metadata.update(_metadata) | ||
ranklist.append(rankset[0]) | ||
|
||
tensorkeys = set() | ||
for safelora in lora_safetenors: | ||
tensorkeys.update(safelora.keys()) | ||
|
||
for keys in tensorkeys: | ||
if keys.startswith("text_encoder") or keys.startswith("unet"): | ||
tensorset = [safelora.get_tensor(keys) for safelora in lora_safetenors] | ||
|
||
is_down = keys.endswith("down") | ||
|
||
if is_down: | ||
_tensor = torch.cat(tensorset, dim=0) | ||
assert _tensor.shape[0] == total_rank | ||
else: | ||
_tensor = torch.cat(tensorset, dim=1) | ||
assert _tensor.shape[1] == total_rank | ||
|
||
total_tensor[keys] = _tensor | ||
keys_rank = ":".join(keys.split(":")[:-1]) + ":rank" | ||
total_metadata[keys_rank] = str(total_rank) | ||
token_size_list = [] | ||
for idx, safelora in enumerate(lora_safetenors): | ||
tokens = [k for k, v in safelora.metadata().items() if v == "<embed>"] | ||
for jdx, token in enumerate(sorted(tokens)): | ||
|
||
total_tensor[f"<s{idx}-{jdx}>"] = safelora.get_tensor(token) | ||
total_metadata[f"<s{idx}-{jdx}>"] = "<embed>" | ||
|
||
print(f"Embedding {token} replaced to <s{idx}-{jdx}>") | ||
|
||
if total_metadata.get(token, None) is not None: | ||
del total_metadata[token] | ||
|
||
token_size_list.append(len(tokens)) | ||
|
||
return total_tensor, total_metadata, ranklist, token_size_list | ||
|
||
|
||
class DummySafeTensorObject: | ||
def __init__(self, tensor: dict, metadata): | ||
self.tensor = tensor | ||
self._metadata = metadata | ||
|
||
def keys(self): | ||
return self.tensor.keys() | ||
|
||
def metadata(self): | ||
return self._metadata | ||
|
||
def get_tensor(self, key): | ||
return self.tensor[key] | ||
|
||
|
||
class LoRAManager: | ||
def __init__(self, lora_paths_list: List[str], pipe: StableDiffusionPipeline): | ||
|
||
self.lora_paths_list = lora_paths_list | ||
self.pipe = pipe | ||
self._setup() | ||
|
||
def _setup(self): | ||
|
||
self._lora_safetenors = [ | ||
safe_open(path, framework="pt", device="cpu") | ||
for path in self.lora_paths_list | ||
] | ||
|
||
( | ||
total_tensor, | ||
total_metadata, | ||
self.ranklist, | ||
self.token_size_list, | ||
) = lora_join(self._lora_safetenors) | ||
|
||
self.total_safelora = DummySafeTensorObject(total_tensor, total_metadata) | ||
|
||
monkeypatch_or_replace_safeloras(self.pipe, self.total_safelora) | ||
tok_dict = parse_safeloras_embeds(self.total_safelora) | ||
|
||
apply_learned_embed_in_clip( | ||
tok_dict, | ||
self.pipe.text_encoder, | ||
self.pipe.tokenizer, | ||
token=None, | ||
idempotent=True, | ||
) | ||
|
||
def tune(self, scales): | ||
|
||
diags = [] | ||
for scale, rank in zip(scales, self.ranklist): | ||
diags = diags + [scale] * rank | ||
|
||
set_lora_diag(self.pipe.unet, torch.tensor(diags)) | ||
|
||
def prompt(self, prompt): | ||
if prompt is not None: | ||
for idx, tok_size in enumerate(self.token_size_list): | ||
prompt = prompt.replace( | ||
f"<{idx + 1}>", | ||
"".join([f"<s{idx}-{jdx}>" for jdx in range(tok_size)]), | ||
) | ||
# TODO : Rescale LoRA + Text inputs based on prompt scale params | ||
|
||
return prompt |