Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Feature] Hybrid Data Pipeline #495

Open
wants to merge 7 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from 3 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
@@ -0,0 +1,54 @@
[
{
"messages": [
{
"role": "user",
"content": "I want to know today's weather in Shanghai"
},

{
"role": "assistant",
"content": "Sure, I will search for the weather of Shanghai.",
"function_call": {
"name": "get_current_weather",
"parameters": {
"location": "Shanghai"
}
}
},

{
"role": "function",
"name": "get_current_weather",
"content": "{'temperature': 22}"
},
{
"role": "assistant",
"content": "The weather in Shanghai is 22 celsius"
}


],

"functions": [
{
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA",
"unit": {"type": "string"}
},
"required": ["location"]
}
}
}
]
}

]


Original file line number Diff line number Diff line change
@@ -0,0 +1,204 @@
# Copyright (c) OpenMMLab. All rights reserved.
import torch
from mmengine.dataset import DefaultSampler
from mmengine.hooks import (CheckpointHook, DistSamplerSeedHook, IterTimerHook,
LoggerHook, ParamSchedulerHook)
from mmengine.optim import AmpOptimWrapper, CosineAnnealingLR, LinearLR

from torch.optim import AdamW
from transformers import AutoModelForCausalLM, AutoTokenizer


from xtuner.dataset.hybrid import HybridDataset, hybrid_collate_fn
from xtuner.dataset.hybrid.mappings import openai_to_raw_training
from xtuner.engine.hooks import DatasetInfoHook
from xtuner.engine.runner import TrainLoop
from xtuner.model import HybridFinetune
from xtuner.types import HybridChatTemplate

#######################################################################
# PART 1 Settings #
#######################################################################
# Model
llm_name_or_path = '/mnt/petrelfs/share_data/linzhihao/model/models--internlm--internlm2-chat-7b/snapshots/2292b86b21cb856642782cebed0a453997453b1f/'
visual_encoder_name_or_path = 'openai/clip-vit-large-patch14-336'
# Specify the pretrained pth
pretrained_pth = None
# Data
data_dir = './'
data_files = ['function_call.json']
max_length = 2048

# Chat Template
chat_template = dict(
type=HybridChatTemplate,
system='<|im_start|>system\n{system}<|im_end|>\n',
user='<|im_start|>user\n{user}<|im_end|>\n<|im_start|>assistant\n',
assistant='{assistant}<|im_end|>\n',
stop_words=['<|im_end|>'],
image_token='<image>',
function_call=
'{assistant}<|action_start|><|plugin|>\n{function_call}<|action_end|><|im_end|>\n', # noqa: E501, E251
function_result=
'<|im_start|>environment name=<|plugin|>\n{function_result}<|im_end|>\n<|im_start|>assistant\n', # noqa: E501, E251
functions='<|im_start|>system name=<|plugin|>\n{functions}<|im_end|>\n')

# Scheduler & Optimizer
batch_size = 1 # per_device
accumulative_counts = 1
dataloader_num_workers = 0
max_epochs = 1
optim_type = AdamW
lr = 2e-4
betas = (0.9, 0.999)
weight_decay = 0
max_norm = 1 # grad clip
warmup_ratio = 0.03

# Save
save_steps = 500
save_total_limit = 2 # Maximum checkpoints to keep (-1 means unlimited)

# Evaluate the generation performance during the training
evaluation_freq = 500
SYSTEM = ''
evaluation_images = 'https://llava-vl.github.io/static/images/view.jpg'
evaluation_inputs = ['请描述一下这张照片', 'Please describe this picture']

#######################################################################
# PART 2 Model & Tokenizer & Image Processor #
#######################################################################
tokenizer = dict(
type=AutoTokenizer.from_pretrained,
pretrained_model_name_or_path=llm_name_or_path,
trust_remote_code=True,
padding_side='right')


model = dict(
type=HybridFinetune,
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

这个名字有点奇怪,要不叫做 HybridFinetuneModel,不过还有一个疑问,如果直接写了 finetune,用户会不会以为只能 finetune model 而不能 pretrain model?

llm=dict(
type=AutoModelForCausalLM.from_pretrained,
pretrained_model_name_or_path=llm_name_or_path,
trust_remote_code=True,
torch_dtype=torch.float16))

#######################################################################
# PART 3 Dataset & Dataloader #
#######################################################################
llava_dataset = dict(
type=HybridDataset,
data_dir=data_dir,
data_files=data_files,
sample_ratio=1,
tokenizer=tokenizer,
chat_template=chat_template,
max_length=max_length,
pack_to_max_length=True,
num_workers = dataloader_num_workers,
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

这个地方也有 dataloader_num_workers?

mappings=[openai_to_raw_training])

train_dataloader = dict(
batch_size=batch_size,
num_workers=dataloader_num_workers,
dataset=llava_dataset,
sampler=dict(type=DefaultSampler, shuffle=True),
collate_fn=dict(type=hybrid_collate_fn))

#######################################################################
# PART 4 Scheduler & Optimizer #
#######################################################################
# optimizer
optim_wrapper = dict(
type=AmpOptimWrapper,
optimizer=dict(
type=optim_type, lr=lr, betas=betas, weight_decay=weight_decay),
clip_grad=dict(max_norm=max_norm, error_if_nonfinite=False),
accumulative_counts=accumulative_counts,
loss_scale='dynamic',
dtype='float16')

# learning policy
# More information: https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/param_scheduler.md # noqa: E501
param_scheduler = [
dict(
type=LinearLR,
start_factor=1e-5,
by_epoch=True,
begin=0,
end=warmup_ratio * max_epochs,
convert_to_iter_based=True),
dict(
type=CosineAnnealingLR,
eta_min=0.0,
by_epoch=True,
begin=warmup_ratio * max_epochs,
end=max_epochs,
convert_to_iter_based=True)
]

# train, val, test setting
train_cfg = dict(type=TrainLoop, max_epochs=max_epochs)

#######################################################################
# PART 5 Runtime #
#######################################################################
# Log the dialogue periodically during the training process, optional
custom_hooks = [
dict(type=DatasetInfoHook, tokenizer=tokenizer),
# dict(
# type=EvaluateChatHook,
# tokenizer=tokenizer,
# image_processor=image_processor,
# every_n_iters=evaluation_freq,
# evaluation_inputs=evaluation_inputs,
# evaluation_images=evaluation_images,
# system=SYSTEM,
# prompt_template=prompt_template)
]

# configure default hooks
default_hooks = dict(
# record the time of every iteration.
timer=dict(type=IterTimerHook),
# print log every 10 iterations.
logger=dict(type=LoggerHook, log_metric_by_epoch=False, interval=10),
# enable the parameter scheduler.
param_scheduler=dict(type=ParamSchedulerHook),
# save checkpoint per `save_steps`.
checkpoint=dict(
type=CheckpointHook,
by_epoch=False,
interval=save_steps,
max_keep_ckpts=save_total_limit),
# set sampler seed in distributed evrionment.
sampler_seed=dict(type=DistSamplerSeedHook),
)

# configure environment
env_cfg = dict(
# whether to enable cudnn benchmark
cudnn_benchmark=False,
# set multi process parameters
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
# set distributed parameters
dist_cfg=dict(backend='nccl'),
)

# set visualizer
visualizer = None

# set log level
log_level = 'INFO'

# load from which checkpoint
load_from = None

# whether to resume training from the loaded checkpoint
resume = False

# Defaults to use random seed and disable `deterministic`
randomness = dict(seed=None, deterministic=False)

# set log processor
log_processor = dict(by_epoch=False)
Loading
Loading