Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

refactor: Docs around Wick's theorem #289

Merged
merged 5 commits into from
Jan 22, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 3 additions & 3 deletions HepLean.lean
Original file line number Diff line number Diff line change
Expand Up @@ -121,9 +121,9 @@ import HepLean.Meta.TransverseTactics
import HepLean.PerturbationTheory.Algebras.CrAnAlgebra.Basic
import HepLean.PerturbationTheory.Algebras.CrAnAlgebra.NormalOrder
import HepLean.PerturbationTheory.Algebras.CrAnAlgebra.SuperCommute
import HepLean.PerturbationTheory.Algebras.OperatorAlgebra.Basic
import HepLean.PerturbationTheory.Algebras.OperatorAlgebra.NormalOrder
import HepLean.PerturbationTheory.Algebras.OperatorAlgebra.TimeContraction
import HepLean.PerturbationTheory.Algebras.ProtoOperatorAlgebra.Basic
import HepLean.PerturbationTheory.Algebras.ProtoOperatorAlgebra.NormalOrder
import HepLean.PerturbationTheory.Algebras.ProtoOperatorAlgebra.TimeContraction
import HepLean.PerturbationTheory.Algebras.StateAlgebra.Basic
import HepLean.PerturbationTheory.Algebras.StateAlgebra.TimeOrder
import HepLean.PerturbationTheory.CreateAnnihilate
Expand Down
246 changes: 145 additions & 101 deletions HepLean/PerturbationTheory/Algebras/CrAnAlgebra/NormalOrder.lean
Original file line number Diff line number Diff line change
Expand Up @@ -10,17 +10,19 @@ import HepLean.PerturbationTheory.Koszul.KoszulSign

# Normal Ordering in the CrAnAlgebra

In the module
`HepLean.PerturbationTheory.FieldSpecification.NormalOrder`
we defined the normal ordering of a list of `CrAnStates`.
In this module we extend the normal ordering to a linear map on `CrAnAlgebra`.

We derive properties of this normal ordering.

-/

namespace FieldSpecification
variable {𝓕 : FieldSpecification}
open FieldStatistic
/-!

## Normal order on the CrAnAlgebra

-/
namespace CrAnAlgebra

noncomputable section
Expand Down Expand Up @@ -51,6 +53,12 @@ lemma normalOrder_one : normalOrder (𝓕 := 𝓕) 1 = 1 := by
rw [← ofCrAnList_nil, normalOrder_ofCrAnList]
simp

/-!

## Normal ordering with a creation operator on the left or annihilation on the right

-/

lemma normalOrder_ofCrAnList_cons_create (φ : 𝓕.CrAnStates)
(hφ : 𝓕 |>ᶜ φ = CreateAnnihilate.create) (φs : List 𝓕.CrAnStates) :
normalOrder (ofCrAnList (φ :: φs)) =
Expand Down Expand Up @@ -95,9 +103,48 @@ lemma normalOrder_mul_annihilate (φ : 𝓕.CrAnStates)
rw [← ofCrAnList_singleton, ← ofCrAnList_append, ofCrAnList_singleton]
rw [normalOrder_ofCrAnList_append_annihilate φ hφ]

lemma normalOrder_crPart_mul (φ : 𝓕.States) (a : CrAnAlgebra 𝓕) :
normalOrder (crPart (StateAlgebra.ofState φ) * a) =
crPart (StateAlgebra.ofState φ) * normalOrder a := by
match φ with
| .negAsymp φ =>
dsimp only [crPart, StateAlgebra.ofState]
simp only [FreeAlgebra.lift_ι_apply]
exact normalOrder_create_mul ⟨States.negAsymp φ, ()⟩ rfl a
| .position φ =>
dsimp only [crPart, StateAlgebra.ofState]
simp only [FreeAlgebra.lift_ι_apply]
refine normalOrder_create_mul _ ?_ _
simp [crAnStatesToCreateAnnihilate]
| .posAsymp φ =>
simp

lemma normalOrder_mul_anPart (φ : 𝓕.States) (a : CrAnAlgebra 𝓕) :
normalOrder (a * anPart (StateAlgebra.ofState φ)) =
normalOrder a * anPart (StateAlgebra.ofState φ) := by
match φ with
| .negAsymp φ =>
simp
| .position φ =>
dsimp only [anPart, StateAlgebra.ofState]
simp only [FreeAlgebra.lift_ι_apply]
refine normalOrder_mul_annihilate _ ?_ _
simp [crAnStatesToCreateAnnihilate]
| .posAsymp φ =>
dsimp only [anPart, StateAlgebra.ofState]
simp only [FreeAlgebra.lift_ι_apply]
refine normalOrder_mul_annihilate _ ?_ _
simp [crAnStatesToCreateAnnihilate]

/-!

## Normal ordering for an adjacent creation and annihliation state

The main result of this section is `normalOrder_superCommute_annihilate_create`.
-/

lemma normalOrder_swap_create_annihlate_ofCrAnList_ofCrAnList (φc φa : 𝓕.CrAnStates)
(hφc : 𝓕 |>ᶜ φc = CreateAnnihilate.create)
(hφa : 𝓕 |>ᶜ φa = CreateAnnihilate.annihilate)
(hφc : 𝓕 |>ᶜ φc = CreateAnnihilate.create) (hφa : 𝓕 |>ᶜ φa = CreateAnnihilate.annihilate)
(φs φs' : List 𝓕.CrAnStates) :
normalOrder (ofCrAnList φs' * ofCrAnState φc * ofCrAnState φa * ofCrAnList φs) =
𝓢(𝓕 |>ₛ φc, 𝓕 |>ₛ φa) •
Expand All @@ -111,8 +158,7 @@ lemma normalOrder_swap_create_annihlate_ofCrAnList_ofCrAnList (φc φa : 𝓕.Cr
noncomm_ring

lemma normalOrder_swap_create_annihlate_ofCrAnList (φc φa : 𝓕.CrAnStates)
(hφc : 𝓕 |>ᶜ φc = CreateAnnihilate.create)
(hφa : 𝓕 |>ᶜ φa = CreateAnnihilate.annihilate)
(hφc : 𝓕 |>ᶜ φc = CreateAnnihilate.create) (hφa : 𝓕 |>ᶜ φa = CreateAnnihilate.annihilate)
(φs : List 𝓕.CrAnStates) (a : 𝓕.CrAnAlgebra) :
normalOrder (ofCrAnList φs * ofCrAnState φc * ofCrAnState φa * a) =
𝓢(𝓕 |>ₛ φc, 𝓕 |>ₛ φa) •
Expand All @@ -129,8 +175,7 @@ lemma normalOrder_swap_create_annihlate_ofCrAnList (φc φa : 𝓕.CrAnStates)
rfl

lemma normalOrder_swap_create_annihlate (φc φa : 𝓕.CrAnStates)
(hφc : 𝓕 |>ᶜ φc = CreateAnnihilate.create)
(hφa : 𝓕 |>ᶜ φa = CreateAnnihilate.annihilate)
(hφc : 𝓕 |>ᶜ φc = CreateAnnihilate.create) (hφa : 𝓕 |>ᶜ φa = CreateAnnihilate.annihilate)
(a b : 𝓕.CrAnAlgebra) :
normalOrder (a * ofCrAnState φc * ofCrAnState φa * b) =
𝓢(𝓕 |>ₛ φc, 𝓕 |>ₛ φa) •
Expand All @@ -149,11 +194,10 @@ lemma normalOrder_swap_create_annihlate (φc φa : 𝓕.CrAnStates)
rfl

lemma normalOrder_superCommute_create_annihilate (φc φa : 𝓕.CrAnStates)
(hφc : 𝓕 |>ᶜ φc = CreateAnnihilate.create)
(hφa : 𝓕 |>ᶜ φa = CreateAnnihilate.annihilate)
(hφc : 𝓕 |>ᶜ φc = CreateAnnihilate.create) (hφa : 𝓕 |>ᶜ φa = CreateAnnihilate.annihilate)
(a b : 𝓕.CrAnAlgebra) :
normalOrder (a * superCommute (ofCrAnState φc) (ofCrAnState φa) * b) = 0 := by
rw [superCommute_ofCrAnState]
rw [superCommute_ofCrAnState_ofCrAnState]
simp only [instCommGroup.eq_1, Algebra.smul_mul_assoc]
rw [mul_sub, sub_mul, map_sub, ← smul_mul_assoc]
rw [← mul_assoc, ← mul_assoc]
Expand All @@ -162,49 +206,15 @@ lemma normalOrder_superCommute_create_annihilate (φc φa : 𝓕.CrAnStates)
map_smul, sub_self]

lemma normalOrder_superCommute_annihilate_create (φc φa : 𝓕.CrAnStates)
(hφc : 𝓕 |>ᶜ φc = CreateAnnihilate.create)
(hφa : 𝓕 |>ᶜ φa = CreateAnnihilate.annihilate)
(hφc : 𝓕 |>ᶜ φc = CreateAnnihilate.create) (hφa : 𝓕 |>ᶜ φa = CreateAnnihilate.annihilate)
(a b : 𝓕.CrAnAlgebra) :
normalOrder (a * superCommute (ofCrAnState φa) (ofCrAnState φc) * b) = 0 := by
rw [superCommute_ofCrAnState_symm]
rw [superCommute_ofCrAnState_ofCrAnState_symm]
simp only [instCommGroup.eq_1, neg_smul, mul_neg, Algebra.mul_smul_comm, neg_mul,
Algebra.smul_mul_assoc, map_neg, map_smul, neg_eq_zero, smul_eq_zero]
apply Or.inr
exact normalOrder_superCommute_create_annihilate φc φa hφc hφa a b

lemma normalOrder_crPart_mul (φ : 𝓕.States) (a : CrAnAlgebra 𝓕) :
normalOrder (crPart (StateAlgebra.ofState φ) * a) =
crPart (StateAlgebra.ofState φ) * normalOrder a := by
match φ with
| .negAsymp φ =>
dsimp only [crPart, StateAlgebra.ofState]
simp only [FreeAlgebra.lift_ι_apply]
exact normalOrder_create_mul ⟨States.negAsymp φ, ()⟩ rfl a
| .position φ =>
dsimp only [crPart, StateAlgebra.ofState]
simp only [FreeAlgebra.lift_ι_apply]
refine normalOrder_create_mul _ ?_ _
simp [crAnStatesToCreateAnnihilate]
| .posAsymp φ =>
simp

lemma normalOrder_mul_anPart (φ : 𝓕.States) (a : CrAnAlgebra 𝓕) :
normalOrder (a * anPart (StateAlgebra.ofState φ)) =
normalOrder a * anPart (StateAlgebra.ofState φ) := by
match φ with
| .negAsymp φ =>
simp
| .position φ =>
dsimp only [anPart, StateAlgebra.ofState]
simp only [FreeAlgebra.lift_ι_apply]
refine normalOrder_mul_annihilate _ ?_ _
simp [crAnStatesToCreateAnnihilate]
| .posAsymp φ =>
dsimp only [anPart, StateAlgebra.ofState]
simp only [FreeAlgebra.lift_ι_apply]
refine normalOrder_mul_annihilate _ ?_ _
simp [crAnStatesToCreateAnnihilate]

lemma normalOrder_swap_crPart_anPart (φ φ' : 𝓕.States) (a b : CrAnAlgebra 𝓕) :
normalOrder (a * (crPart (StateAlgebra.ofState φ)) * (anPart (StateAlgebra.ofState φ')) * b) =
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') •
Expand Down Expand Up @@ -240,6 +250,14 @@ lemma normalOrder_swap_crPart_anPart (φ φ' : 𝓕.States) (a b : CrAnAlgebra
rfl
rfl

/-!

## Normal ordering for an anPart and crPart

Using the results from above.

-/

lemma normalOrder_swap_anPart_crPart (φ φ' : 𝓕.States) (a b : CrAnAlgebra 𝓕) :
normalOrder (a * (anPart (StateAlgebra.ofState φ)) * (crPart (StateAlgebra.ofState φ')) * b) =
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') • normalOrder (a * (crPart (StateAlgebra.ofState φ')) *
Expand Down Expand Up @@ -290,15 +308,80 @@ lemma normalOrder_superCommute_anPart_crPart (φ φ' : 𝓕.States) (a b : CrAnA
simp only [anPart_posAsymp, crPart_position]
refine normalOrder_superCommute_annihilate_create _ _ (by rfl) (by rfl) _ _

/-!

## The normal ordering of a product of two states

-/

@[simp]
lemma normalOrder_crPart_mul_crPart (φ φ' : 𝓕.States) :
normalOrder (crPart (StateAlgebra.ofState φ) * crPart (StateAlgebra.ofState φ')) =
crPart (StateAlgebra.ofState φ) * crPart (StateAlgebra.ofState φ') := by
rw [normalOrder_crPart_mul]
conv_lhs => rw [← mul_one (crPart (StateAlgebra.ofState φ'))]
rw [normalOrder_crPart_mul, normalOrder_one]
simp

@[simp]
lemma normalOrder_anPart_mul_anPart (φ φ' : 𝓕.States) :
normalOrder (anPart (StateAlgebra.ofState φ) * anPart (StateAlgebra.ofState φ')) =
anPart (StateAlgebra.ofState φ) * anPart (StateAlgebra.ofState φ') := by
rw [normalOrder_mul_anPart]
conv_lhs => rw [← one_mul (anPart (StateAlgebra.ofState φ))]
rw [normalOrder_mul_anPart, normalOrder_one]
simp

@[simp]
lemma normalOrder_crPart_mul_anPart (φ φ' : 𝓕.States) :
normalOrder (crPart (StateAlgebra.ofState φ) * anPart (StateAlgebra.ofState φ')) =
crPart (StateAlgebra.ofState φ) * anPart (StateAlgebra.ofState φ') := by
rw [normalOrder_crPart_mul]
conv_lhs => rw [← one_mul (anPart (StateAlgebra.ofState φ'))]
rw [normalOrder_mul_anPart, normalOrder_one]
simp

@[simp]
lemma normalOrder_anPart_mul_crPart (φ φ' : 𝓕.States) :
normalOrder (anPart (StateAlgebra.ofState φ) * crPart (StateAlgebra.ofState φ')) =
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') •
(crPart (StateAlgebra.ofState φ') * anPart (StateAlgebra.ofState φ)) := by
conv_lhs => rw [← one_mul (anPart (StateAlgebra.ofState φ) * crPart (StateAlgebra.ofState φ'))]
conv_lhs => rw [← mul_one (1 * (anPart (StateAlgebra.ofState φ) *
crPart (StateAlgebra.ofState φ')))]
rw [← mul_assoc, normalOrder_swap_anPart_crPart]
simp

lemma normalOrder_ofState_mul_ofState (φ φ' : 𝓕.States) :
normalOrder (ofState φ * ofState φ') =
crPart (StateAlgebra.ofState φ) * crPart (StateAlgebra.ofState φ') +
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') •
(crPart (StateAlgebra.ofState φ') * anPart (StateAlgebra.ofState φ)) +
crPart (StateAlgebra.ofState φ) * anPart (StateAlgebra.ofState φ') +
anPart (StateAlgebra.ofState φ) * anPart (StateAlgebra.ofState φ') := by
rw [ofState_eq_crPart_add_anPart, ofState_eq_crPart_add_anPart]
rw [mul_add, add_mul, add_mul]
simp only [map_add, normalOrder_crPart_mul_crPart, normalOrder_anPart_mul_crPart,
instCommGroup.eq_1, normalOrder_crPart_mul_anPart, normalOrder_anPart_mul_anPart]
abel

/-!

## Normal order with super commutors

-/

/-! TODO: Split the following two lemmas up into smaller parts. -/

lemma normalOrder_superCommute_ofCrAnList_create_create_ofCrAnList
(φc φc' : 𝓕.CrAnStates) (hφc : 𝓕 |>ᶜ φc = CreateAnnihilate.create)
(hφc' : 𝓕 |>ᶜ φc' = CreateAnnihilate.create) (φs φs' : List 𝓕.CrAnStates) :
(normalOrder (ofCrAnList φs *
superCommute (ofCrAnState φc) (ofCrAnState φc') * ofCrAnList φs')) =
superCommute (ofCrAnState φc) (ofCrAnState φc') * ofCrAnList φs')) =
normalOrderSign (φs ++ φc' :: φc :: φs') •
(ofCrAnList (createFilter φs) * superCommute (ofCrAnState φc) (ofCrAnState φc') *
ofCrAnList (createFilter φs') * ofCrAnList (annihilateFilter (φs ++ φs'))) := by
rw [superCommute_ofCrAnState]
rw [superCommute_ofCrAnState_ofCrAnState]
rw [mul_sub, sub_mul, map_sub]
conv_lhs =>
lhs
Expand Down Expand Up @@ -372,7 +455,7 @@ lemma normalOrder_superCommute_ofCrAnList_annihilate_annihilate_ofCrAnList
(ofCrAnList (createFilter (φs ++ φs'))
* ofCrAnList (annihilateFilter φs) * superCommute (ofCrAnState φa) (ofCrAnState φa')
* ofCrAnList (annihilateFilter φs')) := by
rw [superCommute_ofCrAnState]
rw [superCommute_ofCrAnState_ofCrAnState]
rw [mul_sub, sub_mul, map_sub]
conv_lhs =>
lhs
Expand Down Expand Up @@ -440,62 +523,17 @@ lemma normalOrder_superCommute_ofCrAnList_annihilate_annihilate_ofCrAnList
rw [ofCrAnList_append, ofCrAnList_singleton, ofCrAnList_singleton]
rw [ofCrAnList_append, ofCrAnList_singleton, ofCrAnList_singleton, smul_mul_assoc]

@[simp]
lemma normalOrder_crPart_mul_crPart (φ φ' : 𝓕.States) :
normalOrder (crPart (StateAlgebra.ofState φ) * crPart (StateAlgebra.ofState φ')) =
crPart (StateAlgebra.ofState φ) * crPart (StateAlgebra.ofState φ') := by
rw [normalOrder_crPart_mul]
conv_lhs => rw [← mul_one (crPart (StateAlgebra.ofState φ'))]
rw [normalOrder_crPart_mul, normalOrder_one]
simp

@[simp]
lemma normalOrder_anPart_mul_anPart (φ φ' : 𝓕.States) :
normalOrder (anPart (StateAlgebra.ofState φ) * anPart (StateAlgebra.ofState φ')) =
anPart (StateAlgebra.ofState φ) * anPart (StateAlgebra.ofState φ') := by
rw [normalOrder_mul_anPart]
conv_lhs => rw [← one_mul (anPart (StateAlgebra.ofState φ))]
rw [normalOrder_mul_anPart, normalOrder_one]
simp

@[simp]
lemma normalOrder_crPart_mul_anPart (φ φ' : 𝓕.States) :
normalOrder (crPart (StateAlgebra.ofState φ) * anPart (StateAlgebra.ofState φ')) =
crPart (StateAlgebra.ofState φ) * anPart (StateAlgebra.ofState φ') := by
rw [normalOrder_crPart_mul]
conv_lhs => rw [← one_mul (anPart (StateAlgebra.ofState φ'))]
rw [normalOrder_mul_anPart, normalOrder_one]
simp
/-!

@[simp]
lemma normalOrder_anPart_mul_crPart (φ φ' : 𝓕.States) :
normalOrder (anPart (StateAlgebra.ofState φ) * crPart (StateAlgebra.ofState φ')) =
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') •
(crPart (StateAlgebra.ofState φ') * anPart (StateAlgebra.ofState φ)) := by
conv_lhs => rw [← one_mul (anPart (StateAlgebra.ofState φ) * crPart (StateAlgebra.ofState φ'))]
conv_lhs => rw [← mul_one (1 * (anPart (StateAlgebra.ofState φ) *
crPart (StateAlgebra.ofState φ')))]
rw [← mul_assoc, normalOrder_swap_anPart_crPart]
simp
## Super commututators involving a normal order.

lemma normalOrder_ofState_mul_ofState (φ φ' : 𝓕.States) :
normalOrder (ofState φ * ofState φ') =
crPart (StateAlgebra.ofState φ) * crPart (StateAlgebra.ofState φ') +
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') •
(crPart (StateAlgebra.ofState φ') * anPart (StateAlgebra.ofState φ)) +
crPart (StateAlgebra.ofState φ) * anPart (StateAlgebra.ofState φ') +
anPart (StateAlgebra.ofState φ) * anPart (StateAlgebra.ofState φ') := by
rw [ofState_eq_crPart_add_anPart, ofState_eq_crPart_add_anPart]
rw [mul_add, add_mul, add_mul]
simp only [map_add, normalOrder_crPart_mul_crPart, normalOrder_anPart_mul_crPart,
instCommGroup.eq_1, normalOrder_crPart_mul_anPart, normalOrder_anPart_mul_anPart]
abel
-/

lemma ofCrAnList_superCommute_normalOrder_ofCrAnList (φs φs' : List 𝓕.CrAnStates) :
⟨ofCrAnList φs, normalOrder (ofCrAnList φs')⟩ₛca =
ofCrAnList φs * normalOrder (ofCrAnList φs') -
𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs') • normalOrder (ofCrAnList φs') * ofCrAnList φs := by
simp [normalOrder_ofCrAnList, map_smul, superCommute_ofCrAnList, ofCrAnList_append,
simp [normalOrder_ofCrAnList, map_smul, superCommute_ofCrAnList_ofCrAnList, ofCrAnList_append,
smul_sub, smul_smul, mul_comm]

lemma ofCrAnList_superCommute_normalOrder_ofStateList (φs : List 𝓕.CrAnStates)
Expand All @@ -509,6 +547,12 @@ lemma ofCrAnList_superCommute_normalOrder_ofStateList (φs : List 𝓕.CrAnState
rw [ofCrAnList_superCommute_normalOrder_ofCrAnList,
CrAnSection.statistics_eq_state_statistics]

/-!

## Multiplications with normal order written in terms of super commute.

-/

lemma ofCrAnList_mul_normalOrder_ofStateList_eq_superCommute (φs : List 𝓕.CrAnStates)
(φs' : List 𝓕.States) :
ofCrAnList φs * normalOrder (ofStateList φs') =
Expand Down
Loading
Loading