Skip to content

Commit

Permalink
feat: Add FieldOpAlgebra
Browse files Browse the repository at this point in the history
  • Loading branch information
jstoobysmith committed Jan 27, 2025
1 parent 7738be4 commit 3abc31a
Show file tree
Hide file tree
Showing 4 changed files with 362 additions and 1 deletion.
2 changes: 2 additions & 0 deletions HepLean.lean
Original file line number Diff line number Diff line change
Expand Up @@ -124,6 +124,8 @@ import HepLean.Meta.TransverseTactics
import HepLean.PerturbationTheory.Algebras.CrAnAlgebra.Basic
import HepLean.PerturbationTheory.Algebras.CrAnAlgebra.NormalOrder
import HepLean.PerturbationTheory.Algebras.CrAnAlgebra.SuperCommute
import HepLean.PerturbationTheory.Algebras.FieldOpAlgebra.Basic
import HepLean.PerturbationTheory.Algebras.FieldOpAlgebra.NormalOrder
import HepLean.PerturbationTheory.Algebras.ProtoOperatorAlgebra.Basic
import HepLean.PerturbationTheory.Algebras.ProtoOperatorAlgebra.NormalOrder
import HepLean.PerturbationTheory.Algebras.ProtoOperatorAlgebra.TimeContraction
Expand Down
1 change: 0 additions & 1 deletion HepLean/Lorentz/ComplexTensor/Basis.lean
Original file line number Diff line number Diff line change
Expand Up @@ -48,7 +48,6 @@ lemma perm_basisVector_cast {n m : ℕ} {c : Fin n → complexLorentzTensor.C}
simp only [Functor.const_obj_obj, OverColor.mk_hom] at h1
rw [h1]

TODO "Generalize `basis_eq_FD`."
lemma basis_eq_FD {n : ℕ} (c : Fin n → complexLorentzTensor.C)
(b : Π j, Fin (complexLorentzTensor.repDim (c j))) (i : Fin n)
(h : { as := c i } = { as := c1 }) :
Expand Down
121 changes: 121 additions & 0 deletions HepLean/PerturbationTheory/Algebras/FieldOpAlgebra/Basic.lean
Original file line number Diff line number Diff line change
@@ -0,0 +1,121 @@
/-
Copyright (c) 2025 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.PerturbationTheory.WickContraction.TimeContract
import HepLean.Meta.Remark.Basic
import Mathlib.RingTheory.TwoSidedIdeal.Operations
import Mathlib.Algebra.RingQuot
/-!
# Field operator algebra
-/

namespace FieldSpecification
open CrAnAlgebra
open StateAlgebra
open ProtoOperatorAlgebra
open HepLean.List
open WickContraction
open FieldStatistic

variable (𝓕 : FieldSpecification)

/-- The set contains the super-commutors equal to zero in the operator algebra.
This contains e.g. the super-commutor of two creation operators. -/
def fieldOpIdealSet : Set (CrAnAlgebra 𝓕) :=
{ x |
(∃ (φ ψ : 𝓕.CrAnStates) (a : CrAnAlgebra 𝓕),
x = a * [ofCrAnState φ, ofCrAnState ψ]ₛca - [ofCrAnState φ, ofCrAnState ψ]ₛca * a)
∨ (∃ (φc φc' : 𝓕.CrAnStates) (_ : 𝓕 |>ᶜ φc = .create) (_ : 𝓕 |>ᶜ φc' = .create),
x = [ofCrAnState φc, ofCrAnState φc']ₛca)
∨ (∃ (φa φa' : 𝓕.CrAnStates) (_ : 𝓕 |>ᶜ φa = .annihilate) (_ : 𝓕 |>ᶜ φa' = .annihilate),
x = [ofCrAnState φa, ofCrAnState φa']ₛca)
∨ (∃ (φ φ' : 𝓕.CrAnStates) (_ : ¬ (𝓕 |>ₛ φ) = (𝓕 |>ₛ φ')),
x = [ofCrAnState φ, ofCrAnState φ']ₛca)}

/-- The algebra spanned by cr and an parts of fields, with appropriate super-commutors
set to zero. -/
abbrev FieldOpAlgebra : Type := (TwoSidedIdeal.span 𝓕.fieldOpIdealSet).ringCon.Quotient

namespace FieldOpAlgebra
variable {𝓕 : FieldSpecification}

instance : Setoid (CrAnAlgebra 𝓕) := (TwoSidedIdeal.span 𝓕.fieldOpIdealSet).ringCon.toSetoid

lemma equiv_iff_sub_mem_ideal (x y : CrAnAlgebra 𝓕) :
x ≈ y ↔ x - y ∈ TwoSidedIdeal.span 𝓕.fieldOpIdealSet := by
rw [← TwoSidedIdeal.rel_iff]
rfl

/-- The projection of `CrAnAlgebra` down to `FieldOpAlgebra` as an algebra map. -/
def ι : CrAnAlgebra 𝓕 →ₐ[ℂ] FieldOpAlgebra 𝓕 where
toFun := (TwoSidedIdeal.span 𝓕.fieldOpIdealSet).ringCon.mk'
map_one' := by rfl
map_mul' x y := by rfl
map_zero' := by rfl
map_add' x y := by rfl
commutes' x := by rfl

lemma ι_surjective : Function.Surjective (@ι 𝓕) := by
intro x
obtain ⟨x⟩ := x
use x
rfl

lemma ι_apply (x : CrAnAlgebra 𝓕) : ι x = Quotient.mk _ x := rfl

lemma ι_of_mem_fieldOpIdealSet (x : CrAnAlgebra 𝓕) (hx : x ∈ 𝓕.fieldOpIdealSet) :
ι x = 0 := by
rw [ι_apply]
change ⟦x⟧ = ⟦0
simp only [ringConGen, Quotient.eq]
refine RingConGen.Rel.of x 0 ?_
simpa using hx

lemma ι_superCommute_ofCrAnState_ofCrAnState_mem_center (φ ψ : 𝓕.CrAnStates) :
ι [ofCrAnState φ, ofCrAnState ψ]ₛca ∈ Subalgebra.center ℂ (FieldOpAlgebra 𝓕) := by
rw [Subalgebra.mem_center_iff]
intro b
obtain ⟨b, rfl⟩ := ι_surjective b
rw [← map_mul, ← map_mul]
rw [LinearMap.sub_mem_ker_iff.mp]
simp only [LinearMap.mem_ker]
apply ι_of_mem_fieldOpIdealSet
simp only [fieldOpIdealSet, exists_prop, exists_and_left, Set.mem_setOf_eq]
left
use φ, ψ, b

lemma ι_superCommute_of_create_create (φc φc' : 𝓕.CrAnStates) (hφc : 𝓕 |>ᶜ φc = .create)
(hφc' : 𝓕 |>ᶜ φc' = .create) : ι [ofCrAnState φc, ofCrAnState φc']ₛca = 0 := by
apply ι_of_mem_fieldOpIdealSet
simp only [fieldOpIdealSet, exists_and_left, Set.mem_setOf_eq]
simp only [exists_prop]
right
left
use φc, φc', hφc, hφc'

lemma ι_superCommute_of_annihilate_annihilate (φa φa' : 𝓕.CrAnStates)
(hφa : 𝓕 |>ᶜ φa = .annihilate) (hφa' : 𝓕 |>ᶜ φa' = .annihilate) :
ι [ofCrAnState φa, ofCrAnState φa']ₛca = 0 := by
apply ι_of_mem_fieldOpIdealSet
simp only [fieldOpIdealSet, exists_and_left, Set.mem_setOf_eq]
simp only [exists_prop]
right
right
left
use φa, φa', hφa, hφa'

lemma ι_superCommute_of_diff_statistic (φ ψ : 𝓕.CrAnStates)
(h : (𝓕 |>ₛ φ) ≠ (𝓕 |>ₛ ψ)) : ι [ofCrAnState φ, ofCrAnState ψ]ₛca = 0 := by
apply ι_of_mem_fieldOpIdealSet
simp only [fieldOpIdealSet, exists_prop, exists_and_left, Set.mem_setOf_eq]
right
right
right
use φ, ψ

end FieldOpAlgebra
end FieldSpecification
239 changes: 239 additions & 0 deletions HepLean/PerturbationTheory/Algebras/FieldOpAlgebra/NormalOrder.lean
Original file line number Diff line number Diff line change
@@ -0,0 +1,239 @@
/-
Copyright (c) 2025 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.PerturbationTheory.Algebras.FieldOpAlgebra.Basic
/-!
# Normal Ordering on Field operator algebra
-/

namespace FieldSpecification
open CrAnAlgebra
open StateAlgebra
open ProtoOperatorAlgebra
open HepLean.List
open WickContraction
open FieldStatistic

namespace FieldOpAlgebra
variable {𝓕 : FieldSpecification}

/-!
## Normal order on super-commutators.
The main result of this is
`ι_normalOrder_superCommute_eq_zero_mul`
which states that applying `ι` to the normal order of something containing a super-commutator
is zero.
-/

lemma ι_normalOrder_superCommute_ofCrAnList_ofCrAnList_eq_zero
(φa φa' : 𝓕.CrAnStates) (φs φs' : List 𝓕.CrAnStates) :
ι 𝓝(ofCrAnList φs * [ofCrAnState φa, ofCrAnState φa']ₛca * ofCrAnList φs') = 0 := by
rcases CreateAnnihilate.eq_create_or_annihilate (𝓕 |>ᶜ φa) with hφa | hφa
<;> rcases CreateAnnihilate.eq_create_or_annihilate (𝓕 |>ᶜ φa') with hφa' | hφa'
· rw [normalOrder_superCommute_ofCrAnList_create_create_ofCrAnList φa φa' hφa hφa' φs φs']
rw [map_smul, map_mul, map_mul, map_mul, ι_superCommute_of_create_create φa φa' hφa hφa']
simp
· rw [normalOrder_superCommute_create_annihilate φa φa' hφa hφa' (ofCrAnList φs)
(ofCrAnList φs')]
simp
· rw [normalOrder_superCommute_annihilate_create φa' φa hφa' hφa (ofCrAnList φs)
(ofCrAnList φs')]
simp
· rw [normalOrder_superCommute_ofCrAnList_annihilate_annihilate_ofCrAnList φa φa' hφa hφa' φs φs']
rw [map_smul, map_mul, map_mul, map_mul,
ι_superCommute_of_annihilate_annihilate φa φa' hφa hφa']
simp

lemma ι_normalOrder_superCommute_ofCrAnList_eq_zero
(φa φa' : 𝓕.CrAnStates) (φs : List 𝓕.CrAnStates)
(a : 𝓕.CrAnAlgebra) : ι 𝓝(ofCrAnList φs * [ofCrAnState φa, ofCrAnState φa']ₛca * a) = 0 := by
have hf : ι.toLinearMap ∘ₗ normalOrder ∘ₗ
mulLinearMap (ofCrAnList φs * [ofCrAnState φa, ofCrAnState φa']ₛca) = 0 := by
apply ofCrAnListBasis.ext
intro l
simp only [CrAnAlgebra.ofListBasis_eq_ofList, LinearMap.coe_comp, Function.comp_apply,
AlgHom.toLinearMap_apply, LinearMap.zero_apply]
exact ι_normalOrder_superCommute_ofCrAnList_ofCrAnList_eq_zero φa φa' φs l
change (ι.toLinearMap ∘ₗ normalOrder ∘ₗ
mulLinearMap ((ofCrAnList φs * [ofCrAnState φa, ofCrAnState φa']ₛca))) a = 0
rw [hf]
simp

lemma ι_normalOrder_superCommute_ofCrAnState_eq_zero_mul (φa φa' : 𝓕.CrAnStates)
(a b : 𝓕.CrAnAlgebra) :
ι 𝓝(a * [ofCrAnState φa, ofCrAnState φa']ₛca * b) = 0 := by
rw [mul_assoc]
change (ι.toLinearMap ∘ₗ normalOrder ∘ₗ mulLinearMap.flip
([ofCrAnState φa, ofCrAnState φa']ₛca * b)) a = 0
have hf : ι.toLinearMap ∘ₗ normalOrder ∘ₗ mulLinearMap.flip
([ofCrAnState φa, ofCrAnState φa']ₛca * b) = 0 := by
apply ofCrAnListBasis.ext
intro l
simp only [mulLinearMap, CrAnAlgebra.ofListBasis_eq_ofList, LinearMap.coe_comp,
Function.comp_apply, LinearMap.flip_apply, LinearMap.coe_mk, AddHom.coe_mk,
AlgHom.toLinearMap_apply, LinearMap.zero_apply]
rw [← mul_assoc]
exact ι_normalOrder_superCommute_ofCrAnList_eq_zero φa φa' _ _
rw [hf]
simp

lemma ι_normalOrder_superCommute_ofCrAnState_ofCrAnList_eq_zero_mul (φa : 𝓕.CrAnStates)
(φs : List 𝓕.CrAnStates)
(a b : 𝓕.CrAnAlgebra) :
ι 𝓝(a * [ofCrAnState φa, ofCrAnList φs]ₛca * b) = 0 := by
rw [← ofCrAnList_singleton, superCommute_ofCrAnList_ofCrAnList_eq_sum]
rw [Finset.mul_sum, Finset.sum_mul]
rw [map_sum, map_sum]
apply Fintype.sum_eq_zero
intro n
rw [← mul_assoc, ← mul_assoc]
rw [mul_assoc _ _ b, ofCrAnList_singleton]
rw [ι_normalOrder_superCommute_ofCrAnState_eq_zero_mul]

lemma ι_normalOrder_superCommute_ofCrAnList_ofCrAnState_eq_zero_mul (φa : 𝓕.CrAnStates)
(φs : List 𝓕.CrAnStates) (a b : 𝓕.CrAnAlgebra) :
ι 𝓝(a * [ofCrAnList φs, ofCrAnState φa]ₛca * b) = 0 := by
rw [← ofCrAnList_singleton, superCommute_ofCrAnList_ofCrAnList_symm, ofCrAnList_singleton]
simp only [FieldStatistic.instCommGroup.eq_1, FieldStatistic.ofList_singleton, mul_neg,
Algebra.mul_smul_comm, neg_mul, Algebra.smul_mul_assoc, map_neg, map_smul]
rw [ι_normalOrder_superCommute_ofCrAnState_ofCrAnList_eq_zero_mul]
simp

lemma ι_normalOrder_superCommute_ofCrAnList_ofCrAnList_eq_zero_mul
(φs φs' : List 𝓕.CrAnStates) (a b : 𝓕.CrAnAlgebra) :
ι 𝓝(a * [ofCrAnList φs, ofCrAnList φs']ₛca * b) = 0 := by
rw [superCommute_ofCrAnList_ofCrAnList_eq_sum, Finset.mul_sum, Finset.sum_mul]
rw [map_sum, map_sum]
apply Fintype.sum_eq_zero
intro n
rw [← mul_assoc, ← mul_assoc]
rw [mul_assoc _ _ b]
rw [ι_normalOrder_superCommute_ofCrAnList_ofCrAnState_eq_zero_mul]

lemma ι_normalOrder_superCommute_ofCrAnList_eq_zero_mul
(φs : List 𝓕.CrAnStates)
(a b c : 𝓕.CrAnAlgebra) :
ι 𝓝(a * [ofCrAnList φs, c]ₛca * b) = 0 := by
change (ι.toLinearMap ∘ₗ normalOrder ∘ₗ
mulLinearMap.flip b ∘ₗ mulLinearMap a ∘ₗ superCommute (ofCrAnList φs)) c = 0
have hf : (ι.toLinearMap ∘ₗ normalOrder ∘ₗ
mulLinearMap.flip b ∘ₗ mulLinearMap a ∘ₗ superCommute (ofCrAnList φs)) = 0 := by
apply ofCrAnListBasis.ext
intro φs'
simp only [mulLinearMap, LinearMap.coe_mk, AddHom.coe_mk, CrAnAlgebra.ofListBasis_eq_ofList,
LinearMap.coe_comp, Function.comp_apply, LinearMap.flip_apply, AlgHom.toLinearMap_apply,
LinearMap.zero_apply]
rw [ι_normalOrder_superCommute_ofCrAnList_ofCrAnList_eq_zero_mul]
rw [hf]
simp

@[simp]
lemma ι_normalOrder_superCommute_eq_zero_mul
(a b c d : 𝓕.CrAnAlgebra) : ι 𝓝(a * [d, c]ₛca * b) = 0 := by
change (ι.toLinearMap ∘ₗ normalOrder ∘ₗ
mulLinearMap.flip b ∘ₗ mulLinearMap a ∘ₗ superCommute.flip c) d = 0
have hf : (ι.toLinearMap ∘ₗ normalOrder ∘ₗ
mulLinearMap.flip b ∘ₗ mulLinearMap a ∘ₗ superCommute.flip c) = 0 := by
apply ofCrAnListBasis.ext
intro φs
simp only [mulLinearMap, LinearMap.coe_mk, AddHom.coe_mk, CrAnAlgebra.ofListBasis_eq_ofList,
LinearMap.coe_comp, Function.comp_apply, LinearMap.flip_apply, AlgHom.toLinearMap_apply,
LinearMap.zero_apply]
rw [ι_normalOrder_superCommute_ofCrAnList_eq_zero_mul]
rw [hf]
simp

@[simp]
lemma ι_normalOrder_superCommute_eq_zero_mul_right (b c d : 𝓕.CrAnAlgebra) :
ι 𝓝([d, c]ₛca * b) = 0 := by
rw [← ι_normalOrder_superCommute_eq_zero_mul 1 b c d]
simp

@[simp]
lemma ι_normalOrder_superCommute_eq_zero_mul_left (a c d : 𝓕.CrAnAlgebra) :
ι 𝓝(a * [d, c]ₛca) = 0 := by
rw [← ι_normalOrder_superCommute_eq_zero_mul a 1 c d]
simp

@[simp]
lemma ι_normalOrder_superCommute_eq_zero_mul_mul_right (a b1 b2 c d: 𝓕.CrAnAlgebra) :
ι 𝓝(a * [d, c]ₛca * b1 * b2) = 0 := by
rw [← ι_normalOrder_superCommute_eq_zero_mul a (b1 * b2) c d]
congr 2
noncomm_ring

@[simp]
lemma ι_normalOrder_superCommute_eq_zero (c d : 𝓕.CrAnAlgebra) : ι 𝓝([d, c]ₛca) = 0 := by
rw [← ι_normalOrder_superCommute_eq_zero_mul 1 1 c d]
simp

/-!
## Defining normal order for `FiedOpAlgebra`.
-/

lemma ι_normalOrder_zero_of_mem_ideal (a : 𝓕.CrAnAlgebra)
(h : a ∈ TwoSidedIdeal.span 𝓕.fieldOpIdealSet) : ι 𝓝(a) = 0 := by
rw [TwoSidedIdeal.mem_span_iff_mem_addSubgroup_closure] at h
let p {k : Set 𝓕.CrAnAlgebra} (a : CrAnAlgebra 𝓕) (h : a ∈ AddSubgroup.closure k) := ι 𝓝(a) = 0
change p a h
apply AddSubgroup.closure_induction
· intro x hx
obtain ⟨a, ha, b, hb, rfl⟩ := Set.mem_mul.mp hx
obtain ⟨a, ha, c, hc, rfl⟩ := ha
simp only [p]
simp only [fieldOpIdealSet, exists_prop, exists_and_left, Set.mem_setOf_eq] at hc
match hc with
| Or.inl hc =>
obtain ⟨φa, φa', hφa, hφa', rfl⟩ := hc
simp [mul_sub, sub_mul, ← mul_assoc]
| Or.inr (Or.inl hc) =>
obtain ⟨φa, φa', hφa, hφa', rfl⟩ := hc
simp [mul_sub, sub_mul, ← mul_assoc]
| Or.inr (Or.inr (Or.inl hc)) =>
obtain ⟨φa, φa', hφa, hφa', rfl⟩ := hc
simp [mul_sub, sub_mul, ← mul_assoc]
| Or.inr (Or.inr (Or.inr hc)) =>
obtain ⟨φa, φa', hφa, hφa', rfl⟩ := hc
simp [mul_sub, sub_mul, ← mul_assoc]
· simp [p]
· intro x y hx hy
simp only [map_add, p]
intro h1 h2
simp [h1, h2]
· intro x hx
simp [p]

lemma ι_normalOrder_eq_of_equiv (a b : 𝓕.CrAnAlgebra) (h : a ≈ b) :
ι 𝓝(a) = ι 𝓝(b) := by
rw [equiv_iff_sub_mem_ideal] at h
rw [LinearMap.sub_mem_ker_iff.mp]
simp only [LinearMap.mem_ker, ← map_sub]
exact ι_normalOrder_zero_of_mem_ideal (a - b) h

/-- Normal ordering on `FieldOpAlgebra`. -/
noncomputable def normalOrder : FieldOpAlgebra 𝓕 →ₗ[ℂ] FieldOpAlgebra 𝓕 where
toFun := Quotient.lift (ι.toLinearMap ∘ₗ CrAnAlgebra.normalOrder) ι_normalOrder_eq_of_equiv
map_add' x y := by
obtain ⟨x, hx⟩ := ι_surjective x
obtain ⟨y, hy⟩ := ι_surjective y
subst hx hy
rw [← map_add, ι_apply, ι_apply, ι_apply]
rw [Quotient.lift_mk, Quotient.lift_mk, Quotient.lift_mk]
simp
map_smul' c y := by
obtain ⟨y, hy⟩ := ι_surjective y
subst hy
rw [← map_smul, ι_apply, ι_apply]
simp

end FieldOpAlgebra
end FieldSpecification

0 comments on commit 3abc31a

Please sign in to comment.