forked from openvinotoolkit/open_model_zoo
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
jkamelin
committed
Nov 5, 2020
1 parent
0476ba9
commit 5944695
Showing
13 changed files
with
738 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,23 @@ | ||
models: | ||
- name: efficientdet-d0-tf | ||
launchers: | ||
- framework: dlsdk | ||
adapter: ssd | ||
datasets: | ||
- name: ms_coco_detection_90_class_without_backgound | ||
preprocessing: | ||
- type: resize | ||
aspect_ratio_scale: fit_to_window | ||
size: 512 | ||
- type: padding | ||
size: 512 | ||
pad_type: right_bottom | ||
|
||
postprocessing: | ||
- type: faster_rcnn_postprocessing_resize | ||
size: 512 | ||
- type: shift_labels | ||
offset: 1 | ||
|
||
metrics: | ||
- type: coco_precision |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,86 @@ | ||
# efficientdet-d0-tf | ||
|
||
## Use Case and High-Level Description | ||
|
||
The "efficientdet-d0" model is one of the [EfficientDet](https://arxiv.org/abs/1911.09070) | ||
models designed to perform object detection. This model was pretrained in TensorFlow*. | ||
All the EfficientDet models have been pretrained on the MSCOCO* image database. | ||
For details about this family of models, check out the Google AutoML [repository] | ||
(https://github.com/google/automl/tree/master/efficientdet). | ||
|
||
## Example | ||
|
||
## Specification | ||
|
||
| Metric | Value | | ||
|-------------------|-----------------| | ||
| Type | Object detection| | ||
| GFLOPs | 0.819 | | ||
| MParams | 5.268 | | ||
| Source framework | TensorFlow\* | | ||
|
||
## Accuracy | ||
|
||
| Metric | Converted model | | ||
| ------ | --------------- | | ||
| coco_precision | 31.95%| | ||
|
||
## Performance | ||
|
||
## Input | ||
|
||
### Original Model | ||
|
||
Image, name - `convert_image/Cast`, shape - `[1x512x512x3]`, format is `[BxHxWxC]`, where: | ||
|
||
- `B` - batch size | ||
- `H` - height | ||
- `W` - width | ||
- `C` - channel | ||
|
||
Channel order is `RGB`. | ||
|
||
### Converted Model | ||
|
||
Image, name - `convert_image/Cast/placeholder_port_0`, shape - `[1x3x512x512]`, format is `[BxCxHxW]`, where: | ||
|
||
- `B` - batch size | ||
- `C` - channel | ||
- `H` - height | ||
- `W` - width | ||
|
||
Channel order is `BGR`. | ||
|
||
## Output | ||
|
||
### Original Model | ||
|
||
The array of summary detection information, name: `detections`, shape: [1, 7, N], where N is the number of detected | ||
bounding boxes. For each detection, the description has the format: | ||
[`image_id`, `y_min`, `x_min`, `y_max`, `x_max`, `confidence`, `label`], | ||
where: | ||
|
||
- `image_id` - ID of the image in the batch | ||
- (`x_min`, `y_min`) - coordinates of the top left bounding box corner | ||
- (`x_max`, `y_max`) - coordinates of the bottom right bounding box corner | ||
- `confidence` - confidence for the predicted class | ||
- `label` - predicted class ID, starting from 1 | ||
|
||
### Converted Model | ||
|
||
The array of summary detection information, name: `detections`, shape: [1, 1, N, 7], where N is the number of detected | ||
bounding boxes. For each detection, the description has the format: | ||
[`image_id`, `label`, `conf`, `x_min`, `y_min`, `x_max`, `y_max`], | ||
where: | ||
|
||
- `image_id` - ID of the image in the batch | ||
- `label` - predicted class ID, starting from 0 | ||
- `conf` - confidence for the predicted class | ||
- (`x_min`, `y_min`) - coordinates of the top left bounding box corner (coordinates stored in normalized format, in range [0, 1]) | ||
- (`x_max`, `y_max`) - coordinates of the bottom right bounding box corner (coordinates stored in normalized format, in range [0, 1]) | ||
|
||
## Legal Information | ||
|
||
The original model is distributed under the | ||
[Apache License, Version 2.0](https://raw.githubusercontent.com/google/automl/master/LICENSE). | ||
A copy of the license is provided in [APACHE-2.0-TF-AutoML.txt](../licenses/APACHE-2.0-TF-AutoML.txt). |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,113 @@ | ||
# Copyright (c) 2020 Intel Corporation | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
description: >- | ||
The "efficientdet-d0" model is one of the EfficientDet <https://arxiv.org/abs/1911.09070> | ||
models designed to perform object detection. This model was pretrained in TensorFlow*. | ||
All the EfficientDet models have been pretrained on the MSCOCO* image database. | ||
For details about this family of models, check out the Google AutoML repository | ||
<https://github.com/google/automl/tree/master/efficientdet>. | ||
task_type: detection | ||
files: | ||
- name: efficientdet-d0.tar.gz | ||
size: 28828936 | ||
sha256: 74794c937aa1fa2f559c2393d22b251b1f7135a49b108bd0414bc4f4800ca15d | ||
source: https://storage.googleapis.com/cloud-tpu-checkpoints/efficientdet/coco2/efficientdet-d0.tar.gz | ||
- name: model_inspect.py | ||
size: 20388 | ||
sha256: 6c68fe02f10d62dd87c2fc550b41c3df5cce52f0449be22e0699fbf209e3cbc1 | ||
source: https://raw.githubusercontent.com/google/automl/341af7d4da7805c3a874877484e133f33c420ec5/efficientdet/model_inspect.py | ||
- name: hparams_config.py | ||
size: 13750 | ||
sha256: a7f9a3215a864e2f393addefc997ceba1d78ccba4909390310c453e391c9710b | ||
source: https://raw.githubusercontent.com/google/automl/341af7d4da7805c3a874877484e133f33c420ec5/efficientdet/hparams_config.py | ||
- name: inference.py | ||
size: 25076 | ||
sha256: 1f0a633de186f9b786979ead00921b910e9853bb33717328f76c1f71af8be997 | ||
source: https://raw.githubusercontent.com/google/automl/341af7d4da7805c3a874877484e133f33c420ec5/efficientdet/inference.py | ||
- name: dataloader.py | ||
size: 19251 | ||
sha256: 5e4bdfc1a746dd2fffe6a0d7bd83ea6422b2883fce5e8e7fb7ed381e919c11a9 | ||
source: https://raw.githubusercontent.com/google/automl/341af7d4da7805c3a874877484e133f33c420ec5/efficientdet/dataloader.py | ||
- name: nms_np.py | ||
size: 11404 | ||
sha256: e72ffbab850f9a267f9cc5ae480a4ee0936402fd109dfd3c2fa7b5644e71245f | ||
source: https://raw.githubusercontent.com/google/automl/341af7d4da7805c3a874877484e133f33c420ec5/efficientdet/nms_np.py | ||
- name: utils.py | ||
size: 25677 | ||
sha256: eb68091efcf989a908225c2af6d7f632f90c6602659ab06dea628cbdcabdd403 | ||
source: https://raw.githubusercontent.com/google/automl/341af7d4da7805c3a874877484e133f33c420ec5/efficientdet/utils.py | ||
- name: keras/efficientdet_keras.py | ||
size: 32414 | ||
sha256: 4b60b29aabae4365bb9d77b40698a974de9fd4d998f9be94df12b184c0e09ca9 | ||
source: https://raw.githubusercontent.com/google/automl/341af7d4da7805c3a874877484e133f33c420ec5/efficientdet/keras/efficientdet_keras.py | ||
- name: backbone/efficientnet_builder.py | ||
size: 11609 | ||
sha256: 868b9b4cd06c39e1ec15ea1005c36771676f30003c034a0bed4d06e00932905c | ||
source: https://raw.githubusercontent.com/google/automl/341af7d4da7805c3a874877484e133f33c420ec5/efficientdet/backbone/efficientnet_builder.py | ||
- name: backbone/efficientnet_model.py | ||
size: 27419 | ||
sha256: 0a488e70c46bfa6d98fec66b4c518e0b3a25eedd8ca836123f4ef335dd12bf0c | ||
source: https://raw.githubusercontent.com/google/automl/341af7d4da7805c3a874877484e133f33c420ec5/efficientdet/backbone/efficientnet_model.py | ||
- name: backbone/backbone_factory.py | ||
size: 2963 | ||
sha256: 3babe95f1bd104fdb1f54e49e68e2a12478933058d6a09c2a46401e80fab06c9 | ||
source: https://raw.githubusercontent.com/google/automl/341af7d4da7805c3a874877484e133f33c420ec5/efficientdet/backbone/backbone_factory.py | ||
- name: keras/anchors.py | ||
size: 9175 | ||
sha256: a88000a453e1ec1194cff2155a1148ef1c2ca87ad563cff2f412f1a597c3ffd7 | ||
source: https://raw.githubusercontent.com/google/automl/341af7d4da7805c3a874877484e133f33c420ec5/efficientdet/keras/anchors.py | ||
- name: keras/util_keras.py | ||
size: 2198 | ||
sha256: 81e21202054018d7616ab1d0f41eceaf8b4e31a6d6ee88cb53c251abea9fa582 | ||
source: https://raw.githubusercontent.com/google/automl/341af7d4da7805c3a874877484e133f33c420ec5/efficientdet/keras/util_keras.py | ||
- name: keras/fpn_configs.py | ||
size: 6120 | ||
sha256: 245cdd3308141fbb6d2b04b850d45fabb56a0f8ac74c857c7dd0d38238664f0d | ||
source: https://raw.githubusercontent.com/google/automl/341af7d4da7805c3a874877484e133f33c420ec5/efficientdet/keras/fpn_configs.py | ||
- name: keras/postprocess.py | ||
size: 17677 | ||
sha256: 7ca776128887a813089dfc81a61cd4e82b4c3add100a5bafc1951f7dedd1fb4b | ||
source: https://raw.githubusercontent.com/google/automl/341af7d4da7805c3a874877484e133f33c420ec5/efficientdet/keras/postprocess.py | ||
postprocessing: | ||
# disable imports that aren't needed for this model and code that uses them | ||
- $type: regex_replace | ||
file: inference.py | ||
pattern: '(import det_model_fn|from (keras import label_util|visualize))' | ||
replacement: '# \g<0>' | ||
- $type: regex_replace | ||
file: backbone/backbone_factory.py | ||
pattern: 'from backbone import efficientnet_lite_builder' | ||
replacement: '# \g<0>' | ||
- $type: regex_replace | ||
file: dataloader.py | ||
pattern: 'from (object_detection|keras)' | ||
replacement: '# \g<0>' | ||
- $type: regex_replace | ||
file: keras/anchors.py | ||
pattern: 'from object_detection' | ||
replacement: '# \g<0>' | ||
|
||
- $type: unpack_archive | ||
format: gztar | ||
file: efficientdet-d0.tar.gz | ||
model_optimizer_args: | ||
- --input_shape=[1,512,512,3] | ||
- --input=convert_image/Cast | ||
- --reverse_input_channels | ||
- --input_model=$conv_dir/efficientdet-d0_saved_model/efficientdet-d0_frozen.pb | ||
- --output=concat,concat_1 | ||
- --transformations_config=$mo_dir/extensions/front/tf/automl_efficientdet.json | ||
framework: tf | ||
license: https://raw.githubusercontent.com/google/automl/master/LICENSE |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,38 @@ | ||
#!/usr/bin/env python3 | ||
|
||
# Copyright (c) 2020 Intel Corporation | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import argparse | ||
import subprocess | ||
import sys | ||
|
||
from pathlib import Path | ||
|
||
def main(): | ||
parser = argparse.ArgumentParser() | ||
parser.add_argument('input_dir', type=Path) | ||
parser.add_argument('output_dir', type=Path) | ||
args = parser.parse_args() | ||
|
||
subprocess.run([sys.executable, '--', | ||
str(args.input_dir / 'model_inspect.py'), | ||
"--runmode=saved_model", | ||
"--model_name=efficientdet-d0", | ||
"--ckpt_path={}".format(args.input_dir / "efficientdet-d0"), | ||
"--saved_model_dir={}".format(args.output_dir / "efficientdet-d0_saved_model") | ||
], check=True) | ||
|
||
if __name__ == '__main__': | ||
main() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,23 @@ | ||
models: | ||
- name: efficientdet-d1-tf | ||
launchers: | ||
- framework: dlsdk | ||
adapter: ssd | ||
datasets: | ||
- name: ms_coco_detection_90_class_without_backgound | ||
preprocessing: | ||
- type: resize | ||
aspect_ratio_scale: fit_to_window | ||
size: 640 | ||
- type: padding | ||
size: 640 | ||
pad_type: right_bottom | ||
|
||
postprocessing: | ||
- type: faster_rcnn_postprocessing_resize | ||
size: 640 | ||
- type: shift_labels | ||
offset: 1 | ||
|
||
metrics: | ||
- type: coco_precision |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,86 @@ | ||
# efficientdet-d1-tf | ||
|
||
## Use Case and High-Level Description | ||
|
||
The "efficientdet-d1" model is one of the [EfficientDet](https://arxiv.org/abs/1911.09070) | ||
models designed to perform object detection. This model was pretrained in TensorFlow*. | ||
All the EfficientDet models have been pretrained on the MSCOCO* image database. | ||
For details about this family of models, check out the Google AutoML [repository] | ||
(https://github.com/google/automl/tree/master/efficientdet). | ||
|
||
## Example | ||
|
||
## Specification | ||
|
||
| Metric | Value | | ||
|-------------------|-----------------| | ||
| Type | Object detection| | ||
| GFLOPs | 0.819 | | ||
| MParams | 5.268 | | ||
| Source framework | TensorFlow\* | | ||
|
||
## Accuracy | ||
|
||
| Metric | Converted model | | ||
| ------ | --------------- | | ||
| coco_precision | 37.54%| | ||
|
||
## Performance | ||
|
||
## Input | ||
|
||
### Original Model | ||
|
||
Image, name - `convert_image/Cast`, shape - `[1x640x640x3]`, format is `[BxHxWxC]`, where: | ||
|
||
- `B` - batch size | ||
- `H` - height | ||
- `W` - width | ||
- `C` - channel | ||
|
||
Channel order is `RGB`. | ||
|
||
### Converted Model | ||
|
||
Image, name - `convert_image/Cast/placeholder_port_0`, shape - `[1x3x640x640]`, format is `[BxCxHxW]`, where: | ||
|
||
- `B` - batch size | ||
- `C` - channel | ||
- `H` - height | ||
- `W` - width | ||
|
||
Channel order is `BGR`. | ||
|
||
## Output | ||
|
||
### Original Model | ||
|
||
The array of summary detection information, name: `detections`, shape: [1, 7, N], where N is the number of detected | ||
bounding boxes. For each detection, the description has the format: | ||
[`image_id`, `y_min`, `x_min`, `y_max`, `x_max`, `confidence`, `label`], | ||
where: | ||
|
||
- `image_id` - ID of the image in the batch | ||
- (`x_min`, `y_min`) - coordinates of the top left bounding box corner | ||
- (`x_max`, `y_max`) - coordinates of the bottom right bounding box corner | ||
- `confidence` - confidence for the predicted class | ||
- `label` - predicted class ID, starting from 1 | ||
|
||
### Converted Model | ||
|
||
The array of summary detection information, name: `detections`, shape: [1, 1, N, 7], where N is the number of detected | ||
bounding boxes. For each detection, the description has the format: | ||
[`image_id`, `label`, `conf`, `x_min`, `y_min`, `x_max`, `y_max`], | ||
where: | ||
|
||
- `image_id` - ID of the image in the batch | ||
- `label` - predicted class ID, starting from 0 | ||
- `conf` - confidence for the predicted class | ||
- (`x_min`, `y_min`) - coordinates of the top left bounding box corner (coordinates stored in normalized format, in range [0, 1]) | ||
- (`x_max`, `y_max`) - coordinates of the bottom right bounding box corner (coordinates stored in normalized format, in range [0, 1]) | ||
|
||
## Legal Information | ||
|
||
The original model is distributed under the | ||
[Apache License, Version 2.0](https://raw.githubusercontent.com/google/automl/master/LICENSE). | ||
A copy of the license is provided in [APACHE-2.0-TF-AutoML.txt](../licenses/APACHE-2.0-TF-AutoML.txt). |
Oops, something went wrong.