Skip to content

Tensorflow implementation of "SenticNet 5: Discovering Conceptual Primitives for Sentiment Analysis by Means of Context Embeddings"

License

Notifications You must be signed in to change notification settings

26hzhang/ConceptualPrimitives

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

17 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Conceptual Primitives

Re-implementation of "SenticNet 5: Discovering Conceptual Primitives for Sentiment Analysis by Means of Context Embeddings" in tensorflow for verb substitution and clustering.

Overall Framework and Algorithm

Framework:

Algorithm for context and target word (verb) embedding generation:

Training

To train the conceptual primitives model, please run:

$ python3 main.py --gpu_idx 0 1 \  # number of GPUs used for training and their indices
    --mode train \  # training model or infer
    --resume_training false \  # if true, will resume previous trained parameters
    --neg_sample 10 \  # number of negative samples
    --word_dim 300 \  # input pre-trained / randomly initialized word embedding dimension
    --num_units 300 \  # number of units for rnn cell and hidden layer of feed-forward network
    --k 100 \  # number of units for output layer
    --use_ntn false \  # if use neural tensor network to fuse left and right contexts, otherwise just simply concatenate them
    --tune_emb false \  # whether the input word embedding are tunable while training
    --lr 0.0001 \  # learning rate
    --decay_step 10000 \  # learning rate decay step
    --decay_rate 0.9994 \  # decay rate
    --batch_size 1000 \  # batch size
    --epochs 30 \  # total training epochs
    --ckpt ckpt/ \  # checkpoint path to save model
    --max_to_keep 3 \  # maximal checkpoints can be saved
    --model_name conceptual_primitives \  # model name
    --save_step 10000 \  # save models per steps
    --print_step 1000 \  # show sample test result per steps
    --ukwac_path <raw ukwac dataset path> \  # raw ukwac dataset path
    --glove_path <pre-trained glove embedding path> \  # pre-trained glove word embedding path
    --save_path <processed data save path> \  # path for saving processed dataset
    --word_threshold 90 \  # word threshold, minimal occurrence of words to be kept
    --word_lowercase true  # whether lowercase the text

Inferring

An example for inferring, giving a sentence "When idle, Dave enjoys eating cake with his sister." and a target verb "eating", and the model will return the top N substitutes.

$ python3 main.py --gpu_idx 0 1 --mode infer --use_ntn false
restored model from conceptual_primitives-1000000, done...
Top 10 canidates:
['nibbling', 'drinking', 'munching', 'snacking', 'feeding', 'gorging', 'tasting', 'swallowing', 'chewing', 'feasting']

Reference

Releases

No releases published

Packages

No packages published