-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathcode_for_Github.jl
873 lines (627 loc) · 32.9 KB
/
code_for_Github.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
#=
This code implements the No Stacking, Type 1, Type 2, Type 3, Type 4, and Type 5 formulations
described in the paper Winning Daily Fantasy Hockey Contests Using Integer Programming by
Hunter, Vielma, and Zaman. We have made an attempt to describe the code in great detail, with the
hope that you will use your expertise to build better formulations.
=#
# To install DataFrames, simply run Pkg.add("DataFrames")
using DataFrames
#=
GLPK is an open-source solver, and additionally Cbc is an open-source solver. This code uses GLPK
because we found that it was slightly faster than Cbc in practice. For those that want to build
very sophisticated models, they can buy Gurobi. To install GLPKMathProgInterface, simply run
Pkg.add("GLPKMathProgInterface")
=#
using GLPKMathProgInterface
# Once again, to install run Pkg.add("JuMP")
using JuMP
#=
Variables for solving the problem (change these)
=#
# num_lineups is the total number of lineups
num_lineups = 100
# num_overlap is the maximum overlap of players between the lineups that you create
num_overlap = 7
# path_skaters is a string that gives the path to the csv file with the skaters information (see example file for suggested format)
path_skaters = "example_skaters.csv"
# path_goalies is a string that gives the path to the csv file with the goalies information (see example file for suggested format)
path_goalies = "example_goalies.csv"
# path_to_output is a string that gives the path to the csv file that will give the outputted results
path_to_output= "output.csv"
# This is a function that creates one lineup using the No Stacking formulation from the paper
function one_lineup_no_stacking(skaters, goalies, lineups, num_overlap, num_skaters, num_goalies, centers, wingers, defenders, num_teams, skaters_teams, goalie_opponents, team_lines, num_lines, P1_info)
m = Model(solver=GLPKSolverMIP())
# Variable for skaters in lineup.
@defVar(m, skaters_lineup[i=1:num_skaters], Bin)
# Variable for goalie in lineup.
@defVar(m, goalies_lineup[i=1:num_goalies], Bin)
# One goalie constraint
@addConstraint(m, sum{goalies_lineup[i], i=1:num_goalies} == 1)
# Eight Skaters constraint
@addConstraint(m, sum{skaters_lineup[i], i=1:num_skaters} == 8)
# between 2 and 3 centers
@addConstraint(m, sum{centers[i]*skaters_lineup[i], i=1:num_skaters} <= 3)
@addConstraint(m, 2 <= sum{centers[i]*skaters_lineup[i], i=1:num_skaters})
# between 3 and 4 wingers
@addConstraint(m, sum{wingers[i]*skaters_lineup[i], i=1:num_skaters} <= 4)
@addConstraint(m, 3<=sum{wingers[i]*skaters_lineup[i], i=1:num_skaters})
# between 2 and 3 defenders
@addConstraint(m, 2 <= sum{defenders[i]*skaters_lineup[i], i=1:num_skaters})
@addConstraint(m, sum{defenders[i]*skaters_lineup[i], i=1:num_skaters} <= 3)
# Financial Constraint
@addConstraint(m, sum{skaters[i,:Salary]*skaters_lineup[i], i=1:num_skaters} + sum{goalies[i,:Salary]*goalies_lineup[i], i=1:num_goalies} <= 50000)
# at least 3 different teams for the 8 skaters constraints
@defVar(m, used_team[i=1:num_teams], Bin)
@addConstraint(m, constr[i=1:num_teams], used_team[i] <= sum{skaters_teams[t, i]*skaters_lineup[t], t=1:num_skaters})
@addConstraint(m, sum{used_team[i], i=1:num_teams} >= 3)
# Overlap Constraint
@addConstraint(m, constr[i=1:size(lineups)[2]], sum{lineups[j,i]*skaters_lineup[j], j=1:num_skaters} + sum{lineups[num_skaters+j,i]*goalies_lineup[j], j=1:num_goalies} <= num_overlap)
# Objective
@setObjective(m, Max, sum{skaters[i,:Projection]*skaters_lineup[i], i=1:num_skaters} + sum{goalies[i,:Projection]*goalies_lineup[i], i=1:num_goalies})
# Solve the integer programming problem
println("Solving Problem...")
@printf("\n")
status = solve(m);
# Puts the output of one lineup into a format that will be used later
if status==:Optimal
skaters_lineup_copy = Array(Int64, 0)
for i=1:num_skaters
if getValue(skaters_lineup[i]) >= 0.9 && getValue(skaters_lineup[i]) <= 1.1
skaters_lineup_copy = vcat(skaters_lineup_copy, fill(1,1))
else
skaters_lineup_copy = vcat(skaters_lineup_copy, fill(0,1))
end
end
for i=1:num_goalies
if getValue(goalies_lineup[i]) >= 0.9 && getValue(goalies_lineup[i]) <= 1.1
skaters_lineup_copy = vcat(skaters_lineup_copy, fill(1,1))
else
skaters_lineup_copy = vcat(skaters_lineup_copy, fill(0,1))
end
end
return(skaters_lineup_copy)
end
end
# This is a function that creates one lineup using the Type 1 formulation from the paper
function one_lineup_Type_1(skaters, goalies, lineups, num_overlap, num_skaters, num_goalies, centers, wingers, defenders, num_teams, skaters_teams, goalie_opponents, team_lines, num_lines, P1_info)
m = Model(solver=GLPKSolverMIP())
# Variable for skaters in lineup
@defVar(m, skaters_lineup[i=1:num_skaters], Bin)
# Variable for goalie in lineup
@defVar(m, goalies_lineup[i=1:num_goalies], Bin)
# One goalie constraint
@addConstraint(m, sum{goalies_lineup[i], i=1:num_goalies} == 1)
# Eight skaters constraint
@addConstraint(m, sum{skaters_lineup[i], i=1:num_skaters} == 8)
# between 2 and 3 centers
@addConstraint(m, sum{centers[i]*skaters_lineup[i], i=1:num_skaters} <= 3)
@addConstraint(m, 2 <= sum{centers[i]*skaters_lineup[i], i=1:num_skaters})
# between 3 and 4 wingers
@addConstraint(m, sum{wingers[i]*skaters_lineup[i], i=1:num_skaters} <= 4)
@addConstraint(m, 3<=sum{wingers[i]*skaters_lineup[i], i=1:num_skaters})
# between 2 and 3 defenders
@addConstraint(m, 2 <= sum{defenders[i]*skaters_lineup[i], i=1:num_skaters})
@addConstraint(m, sum{defenders[i]*skaters_lineup[i], i=1:num_skaters} <= 3)
# Financial Constraint
@addConstraint(m, sum{skaters[i,:Salary]*skaters_lineup[i], i=1:num_skaters} + sum{goalies[i,:Salary]*goalies_lineup[i], i=1:num_goalies} <= 50000)
# At least 3 different teams for the 8 skaters constraint
@defVar(m, used_team[i=1:num_teams], Bin)
@addConstraint(m, constr[i=1:num_teams], used_team[i] <= sum{skaters_teams[t, i]*skaters_lineup[t], t=1:num_skaters})
@addConstraint(m, sum{used_team[i], i=1:num_teams} >= 3)
# No goalies going against skaters constraint
@addConstraint(m, constr[i=1:num_goalies], 6*goalies_lineup[i] + sum{goalie_opponents[k, i]*skaters_lineup[k], k=1:num_skaters}<=6)
# Must have at least one complete line in each lineup
@defVar(m, line_stack[i=1:num_lines], Bin)
@addConstraint(m, constr[i=1:num_lines], 3*line_stack[i] <= sum{team_lines[k,i]*skaters_lineup[k], k=1:num_skaters})
@addConstraint(m, sum{line_stack[i], i=1:num_lines} >= 1)
# Must have at least 2 lines with at least two people
@defVar(m, line_stack2[i=1:num_lines], Bin)
@addConstraint(m, constr[i=1:num_lines], 2*line_stack2[i] <= sum{team_lines[k,i]*skaters_lineup[k], k=1:num_skaters})
@addConstraint(m, sum{line_stack2[i], i=1:num_lines} >= 2)
# Overlap Constraint
@addConstraint(m, constr[i=1:size(lineups)[2]], sum{lineups[j,i]*skaters_lineup[j], j=1:num_skaters} + sum{lineups[num_skaters+j,i]*goalies_lineup[j], j=1:num_goalies} <= num_overlap)
# Objective
@setObjective(m, Max, sum{skaters[i,:Projection]*skaters_lineup[i], i=1:num_skaters} + sum{goalies[i,:Projection]*goalies_lineup[i], i=1:num_goalies} )
# Solve the integer programming problem
println("Solving Problem...")
@printf("\n")
status = solve(m);
# Puts the output of one lineup into a format that will be used later
if status==:Optimal
skaters_lineup_copy = Array(Int64, 0)
for i=1:num_skaters
if getValue(skaters_lineup[i]) >= 0.9 && getValue(skaters_lineup[i]) <= 1.1
skaters_lineup_copy = vcat(skaters_lineup_copy, fill(1,1))
else
skaters_lineup_copy = vcat(skaters_lineup_copy, fill(0,1))
end
end
for i=1:num_goalies
if getValue(goalies_lineup[i]) >= 0.9 && getValue(goalies_lineup[i]) <= 1.1
skaters_lineup_copy = vcat(skaters_lineup_copy, fill(1,1))
else
skaters_lineup_copy = vcat(skaters_lineup_copy, fill(0,1))
end
end
return(skaters_lineup_copy)
end
end
# This is a function that creates one lineup using the Type 2 formulation from the paper
function one_lineup_Type_2(skaters, goalies, lineups, num_overlap, num_skaters, num_goalies, centers, wingers, defenders, num_teams, skaters_teams, goalie_opponents, team_lines, num_lines, P1_info)
m = Model(solver=GLPKSolverMIP())
# Variable for skaters in lineup
@defVar(m, skaters_lineup[i=1:num_skaters], Bin)
# Variable for goalie in lineup
@defVar(m, goalies_lineup[i=1:num_goalies], Bin)
# One goalie constraint
@addConstraint(m, sum{goalies_lineup[i], i=1:num_goalies} == 1)
# Eight skaters constraint
@addConstraint(m, sum{skaters_lineup[i], i=1:num_skaters} == 8)
# between 2 and 3 centers
@addConstraint(m, sum{centers[i]*skaters_lineup[i], i=1:num_skaters} <= 3)
@addConstraint(m, 2 <= sum{centers[i]*skaters_lineup[i], i=1:num_skaters})
# between 3 and 4 wingers
@addConstraint(m, sum{wingers[i]*skaters_lineup[i], i=1:num_skaters} <= 4)
@addConstraint(m, 3<=sum{wingers[i]*skaters_lineup[i], i=1:num_skaters})
# exactly 2 defenders
@addConstraint(m, 2 == sum{defenders[i]*skaters_lineup[i], i=1:num_skaters})
# Financial Constraint
@addConstraint(m, sum{skaters[i,:Salary]*skaters_lineup[i], i=1:num_skaters} + sum{goalies[i,:Salary]*goalies_lineup[i], i=1:num_goalies} <= 50000)
# at least 3 different teams for the 8 skaters constraint
@defVar(m, used_team[i=1:num_teams], Bin)
@addConstraint(m, constr[i=1:num_teams], used_team[i] <= sum{skaters_teams[t, i]*skaters_lineup[t], t=1:num_skaters})
@addConstraint(m, sum{used_team[i], i=1:num_teams} >= 3)
# No goalies going against skaters constraint
@addConstraint(m, constr[i=1:num_goalies], 6*goalies_lineup[i] + sum{goalie_opponents[k, i]*skaters_lineup[k], k=1:num_skaters}<=6)
# Must have at least one complete line in each lineup
@defVar(m, line_stack[i=1:num_lines], Bin)
@addConstraint(m, constr[i=1:num_lines], 3*line_stack[i] <= sum{team_lines[k,i]*skaters_lineup[k], k=1:num_skaters})
@addConstraint(m, sum{line_stack[i], i=1:num_lines} >= 1)
# Must have at least 2 lines with at least two people
@defVar(m, line_stack2[i=1:num_lines], Bin)
@addConstraint(m, constr[i=1:num_lines], 2*line_stack2[i] <= sum{team_lines[k,i]*skaters_lineup[k], k=1:num_skaters})
@addConstraint(m, sum{line_stack2[i], i=1:num_lines} >= 2)
# Overlap Constraint
@addConstraint(m, constr[i=1:size(lineups)[2]], sum{lineups[j,i]*skaters_lineup[j], j=1:num_skaters} + sum{lineups[num_skaters+j,i]*goalies_lineup[j], j=1:num_goalies} <= num_overlap)
# Objective
@setObjective(m, Max, sum{skaters[i,:Projection]*skaters_lineup[i], i=1:num_skaters} + sum{goalies[i,:Projection]*goalies_lineup[i], i=1:num_goalies} )
# Solve the integer programming problem
println("Solving Problem...")
@printf("\n")
status = solve(m);
# Puts the output of one lineup into a format that will be used later
if status==:Optimal
skaters_lineup_copy = Array(Int64, 0)
for i=1:num_skaters
if getValue(skaters_lineup[i]) >= 0.9 && getValue(skaters_lineup[i]) <= 1.1
skaters_lineup_copy = vcat(skaters_lineup_copy, fill(1,1))
else
skaters_lineup_copy = vcat(skaters_lineup_copy, fill(0,1))
end
end
for i=1:num_goalies
if getValue(goalies_lineup[i]) >= 0.9 && getValue(goalies_lineup[i]) <= 1.1
skaters_lineup_copy = vcat(skaters_lineup_copy, fill(1,1))
else
skaters_lineup_copy = vcat(skaters_lineup_copy, fill(0,1))
end
end
return(skaters_lineup_copy)
end
end
# This is a function that creates one lineup using the Type 3 formulation from the paper
function one_lineup_Type_3(skaters, goalies, lineups, num_overlap, num_skaters, num_goalies, centers, wingers, defenders, num_teams, skaters_teams, goalie_opponents, team_lines, num_lines, P1_info)
m = Model(solver=GLPKSolverMIP())
# Variable for skaters in lineup
@defVar(m, skaters_lineup[i=1:num_skaters], Bin)
# Variable for goalie in lineup
@defVar(m, goalies_lineup[i=1:num_goalies], Bin)
# One goalie constraint
@addConstraint(m, sum{goalies_lineup[i], i=1:num_goalies} == 1)
# Eight Skaters constraint
@addConstraint(m, sum{skaters_lineup[i], i=1:num_skaters} == 8)
# between 2 and 3 centers
@addConstraint(m, sum{centers[i]*skaters_lineup[i], i=1:num_skaters} <= 3)
@addConstraint(m, 2 <= sum{centers[i]*skaters_lineup[i], i=1:num_skaters})
# between 3 and 4 wingers
@addConstraint(m, sum{wingers[i]*skaters_lineup[i], i=1:num_skaters} <= 4)
@addConstraint(m, 3<=sum{wingers[i]*skaters_lineup[i], i=1:num_skaters})
# between 2 and 3 defenders
@addConstraint(m, 2 <= sum{defenders[i]*skaters_lineup[i], i=1:num_skaters})
@addConstraint(m, sum{defenders[i]*skaters_lineup[i], i=1:num_skaters} <= 3)
# Financial Constraint
@addConstraint(m, sum{skaters[i,:Salary]*skaters_lineup[i], i=1:num_skaters} + sum{goalies[i,:Salary]*goalies_lineup[i], i=1:num_goalies} <= 50000)
# at least 3 different teams for the 8 skaters constraint
@defVar(m, used_team[i=1:num_teams], Bin)
@addConstraint(m, constr[i=1:num_teams], used_team[i] <= sum{skaters_teams[t, i]*skaters_lineup[t], t=1:num_skaters})
@addConstraint(m, sum{used_team[i], i=1:num_teams} >= 3)
# No goalies going against skaters
@addConstraint(m, constr[i=1:num_goalies], 6*goalies_lineup[i] + sum{goalie_opponents[k, i]*skaters_lineup[k], k=1:num_skaters}<=6)
# Must have at least one complete line in each lineup
@defVar(m, line_stack[i=1:num_lines], Bin)
@addConstraint(m, constr[i=1:num_lines], 3*line_stack[i] <= sum{team_lines[k,i]*skaters_lineup[k], k=1:num_skaters})
@addConstraint(m, sum{line_stack[i], i=1:num_lines} >= 1)
# Must have at least 2 lines with at least two people
@defVar(m, line_stack2[i=1:num_lines], Bin)
@addConstraint(m, constr[i=1:num_lines], 2*line_stack2[i] <= sum{team_lines[k,i]*skaters_lineup[k], k=1:num_skaters})
@addConstraint(m, sum{line_stack2[i], i=1:num_lines} >= 2)
# The defenders must be on Power Play 1 constraint
@addConstraint(m, sum{sum{defenders[i]*P1_info[i,j]*skaters_lineup[i], i=1:num_skaters}, j=1:num_teams} == sum{defenders[i]*skaters_lineup[i], i=1:num_skaters})
# Overlap Constraint
@addConstraint(m, constr[i=1:size(lineups)[2]], sum{lineups[j,i]*skaters_lineup[j], j=1:num_skaters} + sum{lineups[num_skaters+j,i]*goalies_lineup[j], j=1:num_goalies} <= num_overlap)
# Objective
@setObjective(m, Max, sum{skaters[i,:Projection]*skaters_lineup[i], i=1:num_skaters} + sum{goalies[i,:Projection]*goalies_lineup[i], i=1:num_goalies} )
# Solve the integer programming problem
println("Solving Problem...")
@printf("\n")
status = solve(m);
# Puts the output of one lineup into a format that will be used later
if status==:Optimal
skaters_lineup_copy = Array(Int64, 0)
for i=1:num_skaters
if getValue(skaters_lineup[i]) >= 0.9 && getValue(skaters_lineup[i]) <= 1.1
skaters_lineup_copy = vcat(skaters_lineup_copy, fill(1,1))
else
skaters_lineup_copy = vcat(skaters_lineup_copy, fill(0,1))
end
end
for i=1:num_goalies
if getValue(goalies_lineup[i]) >= 0.9 && getValue(goalies_lineup[i]) <= 1.1
skaters_lineup_copy = vcat(skaters_lineup_copy, fill(1,1))
else
skaters_lineup_copy = vcat(skaters_lineup_copy, fill(0,1))
end
end
return(skaters_lineup_copy)
end
end
# This is a function that creates one lineup using the Type 4 formulation from the paper
function one_lineup_Type_4(skaters, goalies, lineups, num_overlap, num_skaters, num_goalies, centers, wingers, defenders, num_teams, skaters_teams, goalie_opponents, team_lines, num_lines, P1_info)
m = Model(solver=GLPKSolverMIP())
# Variable for skaters in lineup
@defVar(m, skaters_lineup[i=1:num_skaters], Bin)
# Variable for goalie in lineup
@defVar(m, goalies_lineup[i=1:num_goalies], Bin)
# One goalie constraint
@addConstraint(m, sum{goalies_lineup[i], i=1:num_goalies} == 1)
# Eight Skaters constraint
@addConstraint(m, sum{skaters_lineup[i], i=1:num_skaters} == 8)
# between 2 and 3 centers
@addConstraint(m, sum{centers[i]*skaters_lineup[i], i=1:num_skaters} <= 3)
@addConstraint(m, 2 <= sum{centers[i]*skaters_lineup[i], i=1:num_skaters})
# between 3 and 4 wingers
@addConstraint(m, sum{wingers[i]*skaters_lineup[i], i=1:num_skaters} <= 4)
@addConstraint(m, 3<=sum{wingers[i]*skaters_lineup[i], i=1:num_skaters})
# between 2 and 3 defenders
@addConstraint(m, 2 <= sum{defenders[i]*skaters_lineup[i], i=1:num_skaters})
@addConstraint(m, sum{defenders[i]*skaters_lineup[i], i=1:num_skaters} <= 3)
# Financial Constraint
@addConstraint(m, sum{skaters[i,:Salary]*skaters_lineup[i], i=1:num_skaters} + sum{goalies[i,:Salary]*goalies_lineup[i], i=1:num_goalies} <= 50000)
# exactly 3 different teams for the 8 skaters constraint
@defVar(m, used_team[i=1:num_teams], Bin)
@addConstraint(m, constr[i=1:num_teams], used_team[i] <= sum{skaters_teams[t, i]*skaters_lineup[t], t=1:num_skaters})
@addConstraint(m, constr[i=1:num_teams], sum{skaters_teams[t, i]*skaters_lineup[t], t=1:num_skaters} <= 6*used_team[i])
@addConstraint(m, sum{used_team[i], i=1:num_teams} == 3)
# No goalies going against skaters
@addConstraint(m, constr[i=1:num_goalies], 6*goalies_lineup[i] + sum{goalie_opponents[k, i]*skaters_lineup[k], k=1:num_skaters}<=6)
# Must have at least one complete line in each lineup
@defVar(m, line_stack[i=1:num_lines], Bin)
@addConstraint(m, constr[i=1:num_lines], 3*line_stack[i] <= sum{team_lines[k,i]*skaters_lineup[k], k=1:num_skaters})
@addConstraint(m, sum{line_stack[i], i=1:num_lines} >= 1)
# Must have at least 2 lines with at least two people
@defVar(m, line_stack2[i=1:num_lines], Bin)
@addConstraint(m, constr[i=1:num_lines], 2*line_stack2[i] <= sum{team_lines[k,i]*skaters_lineup[k], k=1:num_skaters})
@addConstraint(m, sum{line_stack2[i], i=1:num_lines} >= 2)
# The defenders must be on Power Play 1
@addConstraint(m, sum{sum{defenders[i]*P1_info[i,j]*skaters_lineup[i], i=1:num_skaters}, j=1:num_teams} == sum{defenders[i]*skaters_lineup[i], i=1:num_skaters})
# Overlap Constraint
@addConstraint(m, constr[i=1:size(lineups)[2]], sum{lineups[j,i]*skaters_lineup[j], j=1:num_skaters} + sum{lineups[num_skaters+j,i]*goalies_lineup[j], j=1:num_goalies} <= num_overlap)
# Objective
@setObjective(m, Max, sum{skaters[i,:Projection]*skaters_lineup[i], i=1:num_skaters} + sum{goalies[i,:Projection]*goalies_lineup[i], i=1:num_goalies} )
# Solve the integer programming problem
println("Solving Problem...")
@printf("\n")
status = solve(m);
# Puts the output of one lineup into a format that will be used later
if status==:Optimal
skaters_lineup_copy = Array(Int64, 0)
for i=1:num_skaters
if getValue(skaters_lineup[i]) >= 0.9 && getValue(skaters_lineup[i]) <= 1.1
skaters_lineup_copy = vcat(skaters_lineup_copy, fill(1,1))
else
skaters_lineup_copy = vcat(skaters_lineup_copy, fill(0,1))
end
end
for i=1:num_goalies
if getValue(goalies_lineup[i]) >= 0.9 && getValue(goalies_lineup[i]) <= 1.1
skaters_lineup_copy = vcat(skaters_lineup_copy, fill(1,1))
else
skaters_lineup_copy = vcat(skaters_lineup_copy, fill(0,1))
end
end
return(skaters_lineup_copy)
end
end
# This is a function that creates one lineup using the Type 5 formulation from the paper
function one_lineup_Type_5(skaters, goalies, lineups, num_overlap, num_skaters, num_goalies, centers, wingers, defenders, num_teams, skaters_teams, goalie_opponents, team_lines, num_lines, P1_info)
m = Model(solver=GLPKSolverMIP())
# Variable for skaters in lineup
@defVar(m, skaters_lineup[i=1:num_skaters], Bin)
# Variable for goalie in lineup
@defVar(m, goalies_lineup[i=1:num_goalies], Bin)
# One goalie constraint
@addConstraint(m, sum{goalies_lineup[i], i=1:num_goalies} == 1)
# Eight skaters constraint
@addConstraint(m, sum{skaters_lineup[i], i=1:num_skaters} == 8)
# between 2 and 3 centers
@addConstraint(m, sum{centers[i]*skaters_lineup[i], i=1:num_skaters} <= 3)
@addConstraint(m, 2 <= sum{centers[i]*skaters_lineup[i], i=1:num_skaters})
# between 3 and 4 wingers
@addConstraint(m, sum{wingers[i]*skaters_lineup[i], i=1:num_skaters} <= 4)
@addConstraint(m, 3<=sum{wingers[i]*skaters_lineup[i], i=1:num_skaters})
# between 2 and 3 defenders
@addConstraint(m, 2 <= sum{defenders[i]*skaters_lineup[i], i=1:num_skaters})
@addConstraint(m, sum{defenders[i]*skaters_lineup[i], i=1:num_skaters} <= 3)
# Financial Constraint
@addConstraint(m, sum{skaters[i,:Salary]*skaters_lineup[i], i=1:num_skaters} + sum{goalies[i,:Salary]*goalies_lineup[i], i=1:num_goalies} <= 50000)
# exactly 3 different teams for the 8 skaters constraint
@defVar(m, used_team[i=1:num_teams], Bin)
@addConstraint(m, constr[i=1:num_teams], used_team[i] <= sum{skaters_teams[t, i]*skaters_lineup[t], t=1:num_skaters})
@addConstraint(m, constr[i=1:num_teams], sum{skaters_teams[t, i]*skaters_lineup[t], t=1:num_skaters} <= 6*used_team[i])
@addConstraint(m, sum{used_team[i], i=1:num_teams} == 3)
# No goalies going against skaters
@addConstraint(m, constr[i=1:num_goalies], 6*goalies_lineup[i] + sum{goalie_opponents[k, i]*skaters_lineup[k], k=1:num_skaters}<=6)
# Must have at least one complete line in each lineup
@defVar(m, line_stack[i=1:num_lines], Bin)
@addConstraint(m, constr[i=1:num_lines], 3*line_stack[i] <= sum{team_lines[k,i]*skaters_lineup[k], k=1:num_skaters})
@addConstraint(m, sum{line_stack[i], i=1:num_lines} >= 1)
# Must have at least 2 lines with at least two people
@defVar(m, line_stack2[i=1:num_lines], Bin)
@addConstraint(m, constr[i=1:num_lines], 2*line_stack2[i] <= sum{team_lines[k,i]*skaters_lineup[k], k=1:num_skaters})
@addConstraint(m, sum{line_stack2[i], i=1:num_lines} >= 2)
# Overlap Constraint
@addConstraint(m, constr[i=1:size(lineups)[2]], sum{lineups[j,i]*skaters_lineup[j], j=1:num_skaters} + sum{lineups[num_skaters+j,i]*goalies_lineup[j], j=1:num_goalies} <= num_overlap)
# Objective
@setObjective(m, Max, sum{skaters[i,:Projection]*skaters_lineup[i], i=1:num_skaters} + sum{goalies[i,:Projection]*goalies_lineup[i], i=1:num_goalies} )
# Solve the integer programming problem
println("Solving Problem...")
@printf("\n")
status = solve(m);
# Puts the output of one lineup into a format that will be used later
if status==:Optimal
skaters_lineup_copy = Array(Int64, 0)
for i=1:num_skaters
if getValue(skaters_lineup[i]) >= 0.9 && getValue(skaters_lineup[i]) <= 1.1
skaters_lineup_copy = vcat(skaters_lineup_copy, fill(1,1))
else
skaters_lineup_copy = vcat(skaters_lineup_copy, fill(0,1))
end
end
for i=1:num_goalies
if getValue(goalies_lineup[i]) >= 0.9 && getValue(goalies_lineup[i]) <= 1.1
skaters_lineup_copy = vcat(skaters_lineup_copy, fill(1,1))
else
skaters_lineup_copy = vcat(skaters_lineup_copy, fill(0,1))
end
end
return(skaters_lineup_copy)
end
end
#=
formulation is the type of formulation that you would like to use. Feel free to customize the formulations. In our paper we considered
the Type 4 formulation in great detail, but we have included the code for all of the formulations dicussed in the paper here. For instance,
if you would like to create lineups without stacking, change one_lineup_Type_4 below to one_lineup_no_stacking
=#
formulation = one_lineup_Type_4
function create_lineups(num_lineups, num_overlap, path_skaters, path_goalies, formulation, path_to_output)
#=
num_lineups is an integer that is the number of lineups
num_overlap is an integer that gives the overlap between each lineup
path_skaters is a string that gives the path to the skaters csv file
path_goalies is a string that gives the path to the goalies csv file
formulation is the type of formulation you would like to use (for instance one_lineup_Type_1, one_lineup_Type_2, etc.)
path_to_output is a string where the final csv file with your lineups will be
=#
# Load information for skaters table
skaters = readtable(path_skaters)
# Load information for goalies table
goalies = readtable(path_goalies)
# Number of skaters
num_skaters = size(skaters)[1]
# Number of goalies
num_goalies = size(goalies)[1]
# wingers stores the information on which players are wings
wingers = Array(Int64, 0)
# centers stores the information on which players are centers
centers = Array(Int64, 0)
# defenders stores the information on which players are defenders
defenders = Array(Int64, 0)
#=
Process the position information in the skaters file to populate the wingers,
centers, and defenders with the corresponding correct information
=#
for i =1:num_skaters
if skaters[i,:Position] == "LW" || skaters[i,:Position] == "RW" || skaters[i,:Position] == "W"
wingers=vcat(wingers,fill(1,1))
centers=vcat(centers,fill(0,1))
defenders=vcat(defenders,fill(0,1))
elseif skaters[i,:Position] == "C"
wingers=vcat(wingers,fill(0,1))
centers=vcat(centers,fill(1,1))
defenders=vcat(defenders,fill(0,1))
elseif skaters[i,:Position] == "D" || skaters[i,:Position] == "LD" || skaters[i,:Position] == "RD"
wingers=vcat(wingers,fill(0,1))
centers=vcat(centers,fill(0,1))
defenders=vcat(defenders,fill(1,1))
else
wingers=vcat(wingers,fill(0,1))
centers=vcat(centers,fill(0,1))
defenders=vcat(defenders,fill(1,1))
end
end
# A forward is either a center or a winger
forwards = centers+wingers
# Create team indicators from the information in the skaters file
teams = unique(skaters[:Team])
# Total number of teams
num_teams = size(teams)[1]
# player_info stores information on which team each player is on
player_info = zeros(Int, size(teams)[1])
# Populate player_info with the corresponding information
for j=1:size(teams)[1]
if skaters[1, :Team] == teams[j]
player_info[j] =1
end
end
skaters_teams = player_info'
for i=2:num_skaters
player_info = zeros(Int, size(teams)[1])
for j=1:size(teams)[1]
if skaters[i, :Team] == teams[j]
player_info[j] =1
end
end
skaters_teams = vcat(skaters_teams, player_info')
end
# Create goalie identifiers so you know who they are playing
opponents = goalies[:Opponent]
goalie_teams = goalies[:Team]
goalie_opponents=[]
for num = 1:size(teams)[1]
if opponents[1] == teams[num]
goalie_opponents = skaters_teams[:, num]
end
end
for num = 2:size(opponents)[1]
for num_2 = 1:size(teams)[1]
if opponents[num] == teams[num_2]
goalie_opponents = hcat(goalie_opponents, skaters_teams[:,num_2])
end
end
end
# Create line indicators so you know which players are on which lines
L1_info = zeros(Int, num_skaters)
L2_info = zeros(Int, num_skaters)
L3_info = zeros(Int, num_skaters)
L4_info = zeros(Int, num_skaters)
for num=1:size(skaters)[1]
if skaters[:Team][num] == teams[1]
if skaters[:Line][num] == "1"
L1_info[num] = 1
elseif skaters[:Line][num] == "2"
L2_info[num] = 1
elseif skaters[:Line][num] == "3"
L3_info[num] = 1
elseif skaters[:Line][num] == "4"
L4_info[num] = 1
end
end
end
team_lines = hcat(L1_info, L2_info, L3_info, L4_info)
for num2 = 2:size(teams)[1]
L1_info = zeros(Int, num_skaters)
L2_info = zeros(Int, num_skaters)
L3_info = zeros(Int, num_skaters)
L4_info = zeros(Int, num_skaters)
for num=1:size(skaters)[1]
if skaters[:Team][num] == teams[num2]
if skaters[:Line][num] == "1"
L1_info[num] = 1
elseif skaters[:Line][num] == "2"
L2_info[num] = 1
elseif skaters[:Line][num] == "3"
L3_info[num] = 1
elseif skaters[:Line][num] == "4"
L4_info[num] = 1
end
end
end
team_lines = hcat(team_lines, L1_info, L2_info, L3_info, L4_info)
end
num_lines = size(team_lines)[2]
# Create power play indicators
PP_info = zeros(Int, num_skaters)
for num=1:size(skaters)[1]
if skaters[:Team][num]==teams[1]
if skaters[:Power_Play][num] == "1"
PP_info[num] = 1
end
end
end
P1_info = PP_info
for num2=2:size(teams)[1]
PP_info = zeros(Int, num_skaters)
for num=1:size(skaters)[1]
if skaters[:Team][num] == teams[num2]
if skaters[:Power_Play][num] == "1"
PP_info[num]=1
end
end
end
P1_info = hcat(P1_info, PP_info)
end
# Lineups using formulation as the stacking type
the_lineup= formulation(skaters, goalies, hcat(zeros(Int, num_skaters + num_goalies), zeros(Int, num_skaters + num_goalies)), num_overlap, num_skaters, num_goalies, centers, wingers, defenders, num_teams, skaters_teams, goalie_opponents, team_lines, num_lines, P1_info)
the_lineup2 = formulation(skaters, goalies, hcat(the_lineup, zeros(Int, num_skaters + num_goalies)), num_overlap, num_skaters, num_goalies, centers, wingers, defenders, num_teams, skaters_teams, goalie_opponents, team_lines, num_lines, P1_info)
tracer = hcat(the_lineup, the_lineup2)
for i=1:(num_lineups-2)
try
thelineup=formulation(skaters, goalies, tracer, num_overlap, num_skaters, num_goalies, centers, wingers, defenders, num_teams, skaters_teams, goalie_opponents, team_lines, num_lines, P1_info)
tracer = hcat(tracer,thelineup)
catch
break
end
end
# Create the output csv file
lineup2 = ""
for j = 1:size(tracer)[2]
lineup = ["" "" "" "" "" "" "" "" ""]
for i =1:num_skaters
if tracer[i,j] == 1
if centers[i]==1
if lineup[1]==""
lineup[1] = string(skaters[i,1], " ", skaters[i,2])
elseif lineup[2]==""
lineup[2] = string(skaters[i,1], " ", skaters[i,2])
elseif lineup[9] ==""
lineup[9] = string(skaters[i,1], " ", skaters[i,2])
end
elseif wingers[i] == 1
if lineup[3] == ""
lineup[3] = string(skaters[i,1], " ", skaters[i,2])
elseif lineup[4] == ""
lineup[4] = string(skaters[i,1], " ", skaters[i,2])
elseif lineup[5] == ""
lineup[5] = string(skaters[i,1], " ", skaters[i,2])
elseif lineup[9] == ""
lineup[9] = string(skaters[i,1], " ", skaters[i,2])
end
elseif defenders[i]==1
if lineup[6] == ""
lineup[6] = string(skaters[i,1], " ", skaters[i,2])
elseif lineup[7] ==""
lineup[7] = string(skaters[i,1], " ", skaters[i,2])
elseif lineup[9] == ""
lineup[9] = string(skaters[i,1], " ", skaters[i,2])
end
end
end
end
for i =1:num_goalies
if tracer[num_skaters+i,j] == 1
lineup[8] = string(goalies[i,1], " ", goalies[i,2])
end
end
for name in lineup
lineup2 = string(lineup2, name, ",")
end
lineup2 = chop(lineup2)
lineup2 = string(lineup2, """
""")
end
outfile = open(path_to_output, "w")
write(outfile, lineup2)
close(outfile)
end
# Running the code
create_lineups(num_lineups, num_overlap, path_skaters, path_goalies, formulation, path_to_output)