-
Notifications
You must be signed in to change notification settings - Fork 33
/
Copy pathgenerate_sample_figures.py
124 lines (104 loc) · 4.18 KB
/
generate_sample_figures.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
"""
Script used for generating sample figures used in the paper.
Yujia Li, 02/2015
"""
import core.generative as gen
import pynn.nn as nn
import matplotlib.pyplot as plt
import vistools as vt
import visualize as vis
import dataio.tfd as tfd
import dataio.mnist as mnistio
import gnumpy as gnp
import numpy as np
import os
plt.ion()
# fill in the paths to the model files here
BEST_MNIST_INPUT_SPACE_MODEL = ''
BEST_MNIST_AUTOENCODER = ''
BEST_MNIST_CODE_SPACE_MODEL = ''
BEST_TFD_INPUT_SPACE_MODEL = ''
BEST_TFD_AUTOENCODER = ''
BEST_TFD_CODE_SPACE_MODEL = ''
def get_mnist_input_space_model():
net = gen.StochasticGenerativeNet()
net.load_model_from_file(BEST_MNIST_INPUT_SPACE_MODEL)
return net
def get_mnist_code_space_model():
ae = nn.AutoEncoder()
ae.load_model_from_file(BEST_MNIST_AUTOENCODER)
net = gen.StochasticGenerativeNetWithAutoencoder()
net.load_model_from_file(BEST_MNIST_CODE_SPACE_MODEL)
net.autoencoder = ae
return net
def get_tfd_input_space_model():
net = gen.StochasticGenerativeNet()
net.load_model_from_file(BEST_TFD_INPUT_SPACE_MODEL)
return net
def get_tfd_code_space_model():
ae = nn.AutoEncoder()
ae.load_model_from_file(BEST_TFD_AUTOENCODER)
net = gen.StochasticGenerativeNetWithAutoencoder()
net.load_model_from_file(BEST_TFD_CODE_SPACE_MODEL)
net.autoencoder = ae
return net
def get_model(dataset='mnist', mode='input_space'):
if dataset == 'mnist':
if mode == 'input_space':
return get_mnist_input_space_model()
elif mode == 'code_space':
return get_mnist_code_space_model()
elif dataset == 'tfd':
if mode == 'input_space':
return get_tfd_input_space_model()
elif mode == 'code_space':
return get_tfd_code_space_model()
def generate_samples(dataset='mnist', mode='input_space'):
imsz = [28,28] if dataset=='mnist' else [48,48]
net = get_model(dataset=dataset, mode=mode)
plt.figure()
vt.bwpatchview(net.generate_samples(n_samples=30).asarray(), imsz, 5, gridintensity=1)
if not os.path.exists('figs'):
os.makedirs('figs')
plt.savefig('figs/samples_%s_%s.pdf' % (dataset, mode), bbox_inches='tight')
def generate_all_samples():
generate_samples(dataset='mnist', mode='input_space')
generate_samples(dataset='mnist', mode='code_space')
#generate_samples(dataset='tfd', mode='input_space')
#generate_samples(dataset='tfd', mode='code_space')
def load_train_data(dataset='mnist'):
if dataset == 'mnist':
train_data, _, _ = mnistio.load_data()
elif dataset == 'tfd':
train_data, _, _ = tfd.load_proper_fold(0, 'unlabeled', scale=True)
train_data = train_data.reshape(train_data.shape[0], np.prod(train_data.shape[1:]))
return train_data
def get_nearest_neighbor(dataset='mnist', mode='input_space'):
imsz = [28,28] if dataset=='mnist' else [48,48]
net = get_model(dataset=dataset, mode=mode)
train_data = load_train_data(dataset=dataset)
if not os.path.exists('figs'):
os.makedirs('figs')
vis.nn_search(net.generate_samples(n_samples=12), train_data, top_k=1, imsz=imsz,
orientation='horizontal', output_file='figs/nn_%s_%s.pdf' % (dataset, mode), pad=0.1)
def get_all_nearest_neighbors():
get_nearest_neighbor(dataset='mnist', mode='input_space')
get_nearest_neighbor(dataset='mnist', mode='code_space')
#get_nearest_neighbor(dataset='tfd', mode='input_space')
#get_nearest_neighbor(dataset='tfd', mode='code_space')
def get_morphing_figure(dataset='mnist', mode='input_space'):
imsz = [28,28] if dataset=='mnist' else [48,48]
net = get_model(dataset=dataset, mode=mode)
plt.figure()
gnp.seed_rand(8)
vis.generation_on_a_line(net, n_points=24, imsz=imsz, nrows=10, h_seeds=net.sample_hiddens(5))
if not os.path.exists('figs'):
os.makedirs('figs')
plt.savefig('figs/morphing_%s_%s.pdf' % (dataset, mode), bbox_inches='tight')
def get_all_morphing_figures():
get_morphing_figure(dataset='mnist', mode='code_space')
#get_morphing_figure(dataset='tfd', mode='code_space')
if __name__ == '__main__':
generate_all_samples()
get_all_nearest_neighbors()
get_all_morphing_figures()