-
Notifications
You must be signed in to change notification settings - Fork 33
/
eval_mmd_generative_model.py
339 lines (281 loc) · 12.2 KB
/
eval_mmd_generative_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
"""
Module for evaluating MMD generative models.
Yujia Li, 11/2014
"""
import cPickle as pickle
import time
import numpy as np
import gnumpy as gnp
import core.generative as gen
import core.kernels as ker
def load_tfd_fold(fold=0):
"""
Return train, val, test data for the particular fold.
"""
import dataio.tfd as tfd
# note that the training set used here is the 'unlabeled' set in TFD
x_train, _, _ = tfd.load_fold(fold, 'unlabeled', scale=True)
x_val, _, _ = tfd.load_fold(fold, 'val', scale=True)
x_test, _, _ = tfd.load_fold(fold, 'test', scale=True)
imsz = np.prod(x_train.shape[1:])
return x_train.reshape(x_train.shape[0], imsz), \
x_val.reshape(x_val.shape[0], imsz), \
x_test.reshape(x_test.shape[0], imsz)
def linear_classifier_discrimination(model, data, C_range=[1], verbose=True, samples=None):
"""
Compute the logistic regression classification accuracy.
"""
import sklearn.linear_model as lm
n_examples = data.shape[0]
if samples is None:
gnp.seed_rand(8)
samples = model.generate_samples(n_samples=n_examples).asarray()
x = np.r_[data, samples]
t = np.r_[np.zeros(n_examples, dtype=np.int), np.ones(samples.shape[0], dtype=np.int)]
best_acc = 0
best_classifier = None
for C in C_range:
t_start = time.time()
lr = lm.LogisticRegression(C=C, dual=False, random_state=8)
lr.fit(x,t)
acc = (lr.predict(x) == t).mean()
if verbose:
print 'C=%g acc=%.4f' % (C, acc),
if acc > best_acc:
best_acc = acc
best_classifier = lr
if verbose:
print '*',
else:
if verbose:
print ' ',
if verbose:
print 'time=%.2f' % (time.time() - t_start)
return best_acc, best_classifier
def eval_filter_thresholds(model, data, thres_range=np.arange(0, 0.9, 0.1)):
"""
Evaluate the discrimination performance at different threshold levels.
"""
#data = data[:1000]
n_thres = len(thres_range)
# base classifier
acc, c = linear_classifier_discrimination(model, data, verbose=False)
acc_rec = np.zeros(n_thres, dtype=np.float)
acc_best = 1
for i in range(n_thres):
t_start = time.time()
ftr = gen.ClassifierSampleFilter(c, thres_range[i])
ftnet = gen.StochasticGenerativeNetWithFilter(model, ftr)
s = ftnet.generate_samples(n_samples=data.shape[0]).asarray()
acc_ftr, c_ftr = linear_classifier_discrimination(None, data, verbose=False, samples=s)
print 'thres=%.2f, acc=%.4f, time=%.2f' % (thres_range[i], acc_ftr, time.time() - t_start)
acc_rec[i] = acc_ftr
if acc_ftr < acc_best:
acc_best = acc_ftr
best_ftnet = ftnet
return best_ftnet
def get_filtered_model(net, data):
acc, lr = linear_classifier_discrimination(net, data, C_range=[1, 10, 100, 1000], verbose=True)
filter = gen.ClassifierSampleFilter(lr, threshold=0.8)
filtered_net = gen.StochasticGenerativeNetWithFilter(net, filter)
return filtered_net, lr
def test_single_filter_old(net, data, base_samples, base_classifier, threshold, base_filter=None):
"""
net: the base net
data: training data
base_samples: samples generated by the base model with the base filter
base_classifier: classifier trained to discriminate data from base_samples
threshold: threshold used for the filter
"""
if base_classifier is None:
ftr = gen.BlankSampleFilter()
else:
ftr = gen.ClassifierSampleFilter(base_classifier, threshold, prev=base_filter)
s = ftr.filter(base_samples)
n_base = base_samples.shape[0]
n_s = s.shape[0]
print 'Filtered out %d/%d ~ %%%.1f' % (n_base - n_s, n_base, 100.0 * (n_base - n_s) / n_base)
ftnet = gen.StochasticGenerativeNetWithFilter(net, ftr)
ss = ftnet.generate_samples(n_samples=data.shape[0]).asarray()
acc, c = linear_classifier_discrimination(net, data, samples=ss)
return ftr, c
def test_single_filter(net, data, threshold, base_samples=None, base_classifier=None, base_filter=None):
pass
def log_exp_sum_1d(x):
"""
This computes log(exp(x_1) + exp(x_2) + ... + exp(x_n)) as
x* + log(exp(x_1-x*) + exp(x_2-x*) + ... + exp(x_n-x*)), where x* is the
max over all x_i. This can avoid numerical problems.
"""
x_max = x.max()
if isinstance(x, gnp.garray):
return x_max + gnp.log(gnp.exp(x - x_max).sum())
else:
return x_max + np.log(np.exp(x - x_max).sum())
def log_exp_sum(x, axis=1):
x_max = x.max(axis=axis)
if isinstance(x, gnp.garray):
return (x_max + gnp.log(gnp.exp(x - x_max[:,gnp.newaxis]).sum(axis=axis))).asarray()
else:
return x_max + np.log(np.exp(x - x_max[:,np.newaxis]).sum(axis=axis))
class KDE(object):
"""
Kernel density estimation.
"""
def __init__(self, data, sigma):
self.x = gnp.garray(data) if not isinstance(data, gnp.garray) else data
self.sigma = sigma
self.N = self.x.shape[0]
self.d = self.x.shape[1]
self._ek = ker.EuclideanKernel()
self.factor = float(-np.log(self.N) - self.d / 2.0 * np.log(2 * np.pi * self.sigma**2))
def _log_likelihood(self, data):
return log_exp_sum(-self._ek.compute_kernel_transformation(self.x, data) / (2 * self.sigma**2), axis=1) + self.factor
def log_likelihood(self, data, batch_size=1000):
n_cases = data.shape[0]
if n_cases <= batch_size:
return self._log_likelihood(data)
else:
n_batches = (n_cases + batch_size - 1) / batch_size
log_like = np.zeros(n_cases, dtype=np.float)
for i_batch in range(n_batches):
i_start = i_batch * batch_size
i_end = n_cases if (i_batch + 1 == n_batches) else (i_start + batch_size)
log_like[i_start:i_end] = self._log_likelihood(data[i_start:i_end])
return log_like
def likelihood(self, data):
"""
data is a n_example x n_dims matrix.
"""
return np.exp(self.log_likelihood(data))
def average_likelihood(self, data):
return self.likelihood(data).mean()
def average_log_likelihood(self, data, batch_size=1000):
return self.log_likelihood(data, batch_size=batch_size).mean()
def average_std_log_likelihood(self, data, batch_size=1000):
l = self.log_likelihood(data)
return l.mean(), l.std()
def average_se_log_likelihood(self, data, batch_size=1000):
l = self.log_likelihood(data)
return l.mean(), l.std() / np.sqrt(data.shape[0])
class AlternativeKDE(object):
"""
Kernel density estimation.
"""
def __init__(self, data, sigma):
self.x = data if not isinstance(data, gnp.garray) else data.asarray()
self.sigma = sigma
self.N = self.x.shape[0]
self.d = self.x.shape[1]
def _compute_log_prob(self, data, batch_size=1000):
"""
Break down data into smaller pieces so large matrix will also work.
"""
data = data if not isinstance(data, gnp.garray) else data.asarray()
n_cases = data.shape[0]
K = np.zeros((n_cases, self.N), dtype=np.float)
log_prob = np.zeros(n_cases, dtype=np.float)
for i in range(n_cases):
K[i] = -((self.x - data[i])**2).sum(axis=1) / (2 * self.sigma**2)
log_prob[i] = log_exp_sum_1d(K[i]) - np.log(self.N) - self.d / 2.0 * (np.log(2 * np.pi) + 2 * np.log(self.sigma))
return log_prob
def likelihood(self, data):
"""
data is a n_example x n_dims matrix.
"""
return np.exp(self._compute_log_prob(data))
def average_likelihood(self, data):
return self.likelihood(data).mean()
def log_likelihood(self, data):
# return np.log(self._compute_kde(data) + 1e-50)# - self.d / 2.0 * (np.log(2 * np.pi) + 2 * np.log(self.sigma))
return self._compute_log_prob(data)
def average_log_likelihood(self, data):
return self.log_likelihood(data).mean()
def kde_evaluation(test_data, samples, sigma_range=np.arange(0.1, 0.3, 0.01), verbose=True):
best_log_likelihood = float('-inf')
for sigma in sigma_range:
log_likelihood = KDE(samples, sigma).average_log_likelihood(test_data)
if log_likelihood > best_log_likelihood:
best_log_likelihood = log_likelihood
if verbose:
print 'sigma=%g, log_likelihood=%.2f' % (sigma, log_likelihood)
if verbose:
print '===================='
print 'Best log_likelihood=%.2f' % best_log_likelihood
print ''
return best_log_likelihood
def kde_evaluation_tfd(test_data, samples, sigma_range=np.arange(0.05, 0.25, 0.01), verbose=True):
return kde_evaluation(test_data, samples, sigma_range, verbose)
def kde_evaluation_all_folds(test_data, samples, sigma_range=np.arange(0.05, 0.25, 0.01), verbose=True):
n_folds = len(samples)
best_log_likelihood = float('-inf')
for sigma in sigma_range:
log_likelihood = [KDE(samples[i], sigma).average_log_likelihood(test_data[i]) for i in range(n_folds)]
avg_log_likelihood = sum(log_likelihood) / float(n_folds)
if avg_log_likelihood > best_log_likelihood:
best_log_likelihood = avg_log_likelihood
if verbose:
print 'sigma=%5g, log_likelihood=%8.2f [%s]' % (sigma, avg_log_likelihood, ', '.join(['%8.2f' % l for l in log_likelihood]))
if verbose:
print '===================='
print 'Best log_likelihood=%.2f' % best_log_likelihood
print ''
return best_log_likelihood
def generate_fold_samples(net, fold_model_format, ae=None, fold_ae_format=None, n_samples=10000, n_folds=5):
samples = []
for fold in range(n_folds):
net.load_model_from_file(fold_model_format % fold)
if ae is not None:
ae.load_model_from_file(fold_ae_format % fold)
net.autoencoder = ae
samples.append(net.generate_samples(n_samples=n_samples))
return samples
def get_fold_data(set_name, n_folds=5):
data = []
for i_fold in range(n_folds):
x_train, x_val, x_test = load_tfd_fold(i_fold)
if set_name == 'train':
data.append(x_train)
elif set_name == 'val':
data.append(x_val)
elif set_name == 'test':
data.append(x_test)
return data
def kde_eval_mnist(net, test_data, n_samples=10000, sigma_range=np.arange(0.1, 0.3, 0.01), verbose=True):
s = net.generate_samples(n_samples=n_samples)
best_log_likelihood = float('-inf')
best_se = 0
best_sigma = 0
for sigma in sigma_range:
log_likelihood, se = KDE(s, sigma).average_se_log_likelihood(test_data)
if log_likelihood > best_log_likelihood:
best_log_likelihood = log_likelihood
best_se = se
best_sigma = sigma
if verbose:
print 'sigma=%g, log_likelihood=%.2f (%.2f)' % (sigma, log_likelihood, se)
if verbose:
print '===================='
print 'Best log_likelihood=%.2f (%.2f)' % (best_log_likelihood, best_se)
print ''
return best_log_likelihood, best_se, best_sigma
def kde_eval_tfd(net, test_data_all_folds, n_samples=10000, sigma_range=np.arange(0.05, 0.25, 0.01), verbose=True):
s = net.generate_samples(n_samples=n_samples)
best_log_likelihood = float('-inf')
n_folds = len(test_data_all_folds)
for sigma in sigma_range:
kde = KDE(s, sigma)
log_likelihood = [kde.average_log_likelihood(test_data_all_folds[i]) for i in range(n_folds)]
avg_log_likelihood = sum(log_likelihood) / float(n_folds)
avg_se = np.array(log_likelihood).std() / np.sqrt(n_folds)
if avg_log_likelihood > best_log_likelihood:
best_log_likelihood = avg_log_likelihood
best_se = avg_se
best_sigma = sigma
if verbose:
print 'sigma=%5g, log_likelihood=%8.2f (%.2f) [%s]' % (sigma, avg_log_likelihood, avg_se, ', '.join(['%8.2f' % l for l in log_likelihood]))
if verbose:
print '===================='
print 'Best log_likelihood=%.2f (%.2f)' % (best_log_likelihood, best_se)
print ''
return best_log_likelihood, best_se, best_sigma