-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathday_3.py
98 lines (71 loc) · 3.04 KB
/
day_3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
from collections import Counter
from itertools import chain
import logging
import re
import numpy as np
from typing import Dict, List, Tuple
logging.basicConfig(level=logging.INFO)
# PART 1: How many square inches of fabric are within two or more claims?
def parse_text_file_to_list(filepath: str) -> List[str]:
with open(filepath, 'r') as f:
return f.read().split('\n')
list_of_claims = parse_text_file_to_list('day-3.txt')
def parse_claim_string(claim: str) -> Tuple[str, str, str]:
id = re.search('#(.*) @', claim).group(1)
distance_from_left_and_top = re.search('@ (.*):', claim).group(1)
dimensions = re.search(': (.*)', claim).group(1)
return (id, distance_from_left_and_top, dimensions)
def get_coordinates_occupied_by_each_claim(
list_of_claims: List[str],
) -> Dict[int, List[Tuple[int, int]]]:
coordinates_occupied_by_each_claim = {}
for claim in list_of_claims:
id, distance_from_left_and_top, dimensions = parse_claim_string(claim)
distance_from_left, distance_from_top = tuple(
int(distance) for distance in distance_from_left_and_top.split(',')
)
dimensions = [int(dimension) for dimension in dimensions.split('x')]
width = dimensions[0]
height = dimensions[1]
possible_x_coordinates = np.arange(
distance_from_left + 1,
(distance_from_left + width) + 1,
)
possible_y_coordinates = np.arange(
distance_from_top + 1,
(distance_from_top + height) + 1,
)
coordinates_occupied_by_claim = []
for x in possible_x_coordinates:
for y in possible_y_coordinates:
coordinates_occupied_by_claim.append((x, y))
coordinates_occupied_by_each_claim[id] = coordinates_occupied_by_claim
return coordinates_occupied_by_each_claim
coordinates_occupied_by_each_claim = get_coordinates_occupied_by_each_claim(
list_of_claims,
)
# An easy, but slow way, to flatten a nested list
all_coordinates = sum(list(coordinates_occupied_by_each_claim.values()), [])
inches_within_two_or_more_claims = sum(
1 for count in Counter(all_coordinates).values() if count >= 2
)
logging.info(
f'Number of inches in two or more claims: '
f'{inches_within_two_or_more_claims}.'
)
# PART 2: What is the ID of the only claim that doesn't overlap?
def find_id_of_claim_with_unique_coordinates(
coordinates_occupied_by_each_claim: Dict[int, List[Tuple[int, int]]],
) -> int:
for id, coordinates in coordinates_occupied_by_each_claim.items():
other_dict_without_current = {
k: v for k, v in coordinates_occupied_by_each_claim.items() if k != id
}
other_coordinates = list(other_dict_without_current.values())
other_coordinates = list(chain(*other_coordinates)) # Flatten
if len(list(set(coordinates) & set(other_coordinates))) == 0:
return id
logging.info(
f"ID of the claim that doesn't overlap: "
f'{find_id_of_claim_with_unique_coordinates(coordinates_occupied_by_each_claim)}'
)