forked from yxli2123/LoftQ
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathquantize.py
148 lines (132 loc) · 6.28 KB
/
quantize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import torch.cuda
from transformers import (
AutoModelForCausalLM,
AutoModelForSeq2SeqLM,
AutoModelForSequenceClassification,
AutoTokenizer,
AutoConfig,
)
import utils
import argparse
import os
from peft import LoraConfig, TaskType, get_peft_model, PeftModel
from huggingface_hub import Repository, create_repo
HF_TOKEN = "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"
REPO_TOKEN = "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"
def main(args):
# create repo
ckpt_dir = os.path.join(args.path_to_model_zoo,
args.model_name.split('/')[-1],
f"bit{args.num_bits}",
f"iter{args.num_iter}",
f"rank{args.reduced_rank}",
'fake' if args.fake_quantization else 'real')
ckpt_dir += '' if args.fake_quantization else '-q'
args.num_bits = int(args.num_bits) if args.num_bits - int(args.num_bits) == 0 else args.num_bits
repo_name = "LoftQ/" + args.model_name.split('/')[-1] + f"-bit{args.num_bits}" + f"-rank{args.reduced_rank}"
repo_name += '' if args.fake_quantization else '-q'
repo_id = create_repo(repo_name, exist_ok=True, token=REPO_TOKEN).repo_id
repo = Repository(ckpt_dir, clone_from=repo_id, token=REPO_TOKEN)
# tokenizer
tokenizer = AutoTokenizer.from_pretrained(args.model_name, use_auth_token=HF_TOKEN)
config = AutoConfig.from_pretrained(args.model_name, use_auth_token=HF_TOKEN)
print(config)
# bart
if 'bart' in args.model_name.lower():
model = AutoModelForSeq2SeqLM.from_pretrained(args.model_name)
target_modules = ['q_proj', 'k_proj', 'v_proj', 'fc1', 'fc2', 'out_proj']
block_name = ['pooler', 'classifier', 'LayerNorm', 'embeddings', 'lora']
peft_config = LoraConfig(task_type=TaskType.SEQ_2_SEQ_LM,
inference_mode=False,
r=args.reduced_rank,
lora_alpha=args.reduced_rank,
lora_dropout=0.1,
target_modules=target_modules
)
# llama
elif 'llama' in args.model_name.lower():
model = AutoModelForCausalLM.from_pretrained(args.model_name,
use_auth_token=HF_TOKEN,
device_map='auto')
block_name = ['lm_head', 'norm', 'embed_tokens', 'lora']
target_modules = ['q_proj', 'k_proj', 'v_proj', 'o_proj', 'up_proj', 'down_proj', 'gate_proj']
peft_config = LoraConfig(task_type=TaskType.CAUSAL_LM,
inference_mode=False,
r=args.reduced_rank,
lora_alpha=args.reduced_rank,
lora_dropout=0.1,
target_modules=target_modules
)
elif 'deberta' in args.model_name.lower():
model = AutoModelForSequenceClassification.from_pretrained(args.model_name)
target_modules = ['query_proj', 'key_proj', 'value_proj', 'dense'] # embeddings not supported by peft
block_name = ['pooler', 'classifier', 'LayerNorm', 'lora']
peft_config = LoraConfig(task_type=TaskType.SEQ_CLS,
inference_mode=False,
r=args.reduced_rank,
lora_alpha=args.reduced_rank,
lora_dropout=0.1,
target_modules=target_modules
)
else:
raise NotImplementedError("model not supported")
if args.fake_quantization:
model = get_peft_model(model, peft_config)
model.print_trainable_parameters()
device = 'cuda' if torch.cuda.is_available() else 'cpu'
model = model.to(device)
utils.replace_module(
model,
allow_name=target_modules,
block_name=block_name,
prename='model',
reduced_rank=args.reduced_rank,
num_bits=args.num_bits,
num_iter=args.num_iter,
enable_lora=True,
num_layers=config.num_hidden_layers,
empty_init=False,
quant_method=args.method,
fake_quant=args.fake_quantization,
)
model.base_model.save_pretrained(ckpt_dir)
else:
utils.replace_module(
model,
allow_name=target_modules,
block_name=block_name,
prename='model',
reduced_rank=args.reduced_rank,
num_bits=args.num_bits,
num_iter=args.num_iter,
enable_lora=True,
num_layers=config.num_hidden_layers,
empty_init=False,
quant_method=args.method,
fake_quant=args.fake_quantization,
)
model.save_pretrained(ckpt_dir)
tokenizer.save_pretrained(ckpt_dir)
repo.push_to_hub(commit_message="Upload decomposed weights", auto_lfs_prune=True)
for name, param in model.named_parameters():
print(name, param.shape, param.max(), param.min(), param.mean(), param.requires_grad)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--method', type=str, default='normal', choices=['normal', 'uniform'])
parser.add_argument('--path_to_model_zoo', type=str, default='./yixiaoli_model_zoo_hf/')
parser.add_argument('--model_name', type=str, default='meta-llama/Llama-2-7b-hf',
help='tiiuae/falcon-7b, meta-llama/Llama-2-7b-hf, meta-llama/Llama-2-7b-chat-hf, facebook/bart-large')
parser.add_argument('--num_bits', type=float, default=4)
parser.add_argument('--reduced_rank', type=int, default=64)
parser.add_argument('--num_iter', type=int, default=0)
parser.add_argument('--fake_quantization', action='store_true')
args = parser.parse_args()
# edit_lora_alpha(args)
main(args)
# lora_only(args)
# from accelerate import init_empty_weights
# with init_empty_weights():
# config = AutoConfig.from_pretrained('meta-llama/Llama-2-7b-hf', use_auth_token=HF_TOKEN)
# my_model = AutoModel.from_config(config)
# for k, v in my_model.named_parameters():
# print(k, v.shape)