-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathREINFORCE.py
125 lines (81 loc) · 2.64 KB
/
REINFORCE.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import torch
from torch import nn, optim
import torch.nn.functional as F
from torch.distributions import Categorical
import copy
import gym
import environment
import pyBaba
from tensorboardX import SummaryWriter
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
env = gym.make('baba-babaisyou-v0')
class Network(nn.Module):
def __init__(self):
super(Network, self).__init__()
self.conv1 = nn.Conv2d(pyBaba.Preprocess.TENSOR_DIM, 128, 3, padding=1)
self.conv2 = nn.Conv2d(128, 128, 3, padding=1)
self.conv3 = nn.Conv2d(128, 128, 3, padding=1)
self.conv4 = nn.Conv2d(128, 128, 3, padding=1)
self.conv5 = nn.Conv2d(128, 1, 1, padding=0)
self.fc = nn.Linear(99, 4)
self.log_probs = []
self.rewards = []
def forward(self, x):
x = F.relu(self.conv1(x))
x = F.relu(self.conv2(x))
x = F.relu(self.conv3(x))
x = F.relu(self.conv4(x))
x = F.relu(self.conv5(x))
x = x.view(x.data.size(0), -1)
x = self.fc(x)
return F.softmax(x, dim=1)
net = Network().to(device)
opt = optim.Adam(net.parameters(), lr=1e-3)
def get_action(state):
state = torch.tensor(state).to(device)
policy = net(state)
m = Categorical(policy)
action = m.sample()
net.log_probs.append(m.log_prob(action))
return env.action_space[action.item()]
def train():
R = 0
loss = []
returns = []
for r in net.rewards[::-1]:
R = r + 0.99 * R
returns.insert(0, R)
returns = torch.tensor(returns)
returns = (returns - returns.mean()) / (returns.std() + 1e-5)
for prob, R in zip(net.log_probs, returns):
loss.append(-prob * R)
opt.zero_grad()
loss = torch.cat(loss).sum()
loss.backward()
opt.step()
del net.log_probs[:]
del net.rewards[:]
if __name__ == '__main__':
writer = SummaryWriter()
global_step = 0
for e in range(10000):
score = 0
state = env.reset().reshape(1, -1, 9, 11)
step = 0
while step < 200:
global_step += 1
action = get_action(state)
env.render()
next_state, reward, done, _ = env.step(action)
next_state = next_state.reshape(1, -1, 9, 11)
net.rewards.append(reward)
score += reward
state = copy.deepcopy(next_state)
step += 1
if env.done:
break
train()
writer.add_scalar('Reward', score, e)
writer.add_scalar('Step', step, e)
print(
f'Episode {e}: score: {score:.3f} time_step: {global_step} step: {step}')