generated from tmarumt/r-devcontainer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.qmd
337 lines (283 loc) · 8.15 KB
/
index.qmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
---
title: "Demonstration of Dynamic Treatment Regimes"
author: tmarumt
date: 2023-09-28
date-format: iso
execute:
echo: true
warning: false
message: false
cache: false
format:
revealjs:
standalone: false
embed-resources: false
width: 1600
height: 900
theme: quartomonothemer.scss
slide-number: true
fig-format: svg
fig-align: center
html-math-method: katex
pdf-separate-fragments: false
---
# Introduction {visibility="hidden"}
```{r}
#| output: false
library(tidyverse)
library(gt)
library(gtExtras)
library(quartomonothemer)
library(showtext)
font_title <- "Noto Sans JP"
font_text <- "Noto Sans JP"
font_code <- "Fira Code"
font_sans <- font_text
color_base <- "#0081B0"
color_base_light <- "#98D0E5"
color_accent <- "#D6431B"
color_accent_light <- "#F1BAAB"
gray <- "#bebebe"
darkgray <- "#6d6d6d"
font_add_google(font_title)
font_add_google(font_code)
showtext_auto()
style_mono_quarto(
font_title = font_title,
font_text = font_text,
font_code = font_code,
font_sans = font_sans,
color_base = color_base,
color_accent = color_accent,
color_link = color_accent,
color_code = color_base,
size_base = 30,
path_scss = "quartomonothemer.scss"
)
```
# Q学習のデモンストレーション
## DTRの推定
:::: {.columns}
::: {.column width="100%" height="50%"}
$$
\begin{aligned}
& Y\mid\left(X=x,A=a\right)\sim \mathrm{N}\left(Q\left(x,a\right),1^2\right) & X\sim \mathrm{U}\left(0,1.5\right)\\
& Q\left(x,a\right)=\mathrm{E}\left[Y\mid X=x,A=a\right]=x+a-ax & X\perp A
\end{aligned}
$$
:::
::: {.column width="40%" height="50%"}
::: {.r-stack}
::: {.fragment .fade-out fragment-index=1}
シミュレーションデータの生成
```{r}
set.seed(20230928)
n <- 10000
x <- runif(n, 0, 1.5)
a <- rbinom(n, 1, 0.5)
y <- rnorm(n, x + a * (1 - x), 1)
```
:::
::: {.fragment .fade-in-then-out fragment-index=1}
$a=0$ or $1$ のときの $Y$ の条件付き期待値
$$
\begin{cases}
Q\left(x,0\right)&=\mathrm{E}\left[Y\mid X=x,A=0\right] \\
&=x+0-0 \cdot x \\
&=x \qquad \text{if $a=0$,} \\
Q\left(x,1\right)&=\mathrm{E}\left[Y\mid X=x,A=1\right] \\
&=x+1-1 \cdot x \\
&=1 \qquad \text{if $a=1$.}
\end{cases}
$$
:::
::: {.fragment .fade-in fragment-index=2}
交互作用モデルの当てはめ
```{r}
fit <- lm(y ~ x * a)
co <- coef(fit)
```
```{r}
#| echo: false
t_co <- as.data.frame(co) |> rownames_to_column("Variable") |>
rename(Estimate = co) |>
gt() |>
gt_theme_quarto() |>
gt_highlight_rows(rows = 3:4, fill = color_accent_light)
t_co
```
:::
:::
:::
::: {.column width="60%" height="50%"}
::: {.r-stack}
::: {.fragment .fade-out fragment-index=2}
```{r}
#| echo: false
#| fig-height: 6.5
#| fig-width: 7
#| fig-align: "center"
sample_1dtr <- tibble(
x = x,
a = a,
trt = paste("A", "=", a, sep = " "),
y = y
)
g_sample_1dtr <- sample_1dtr |> ggplot() +
geom_point(mapping = aes(x = x, y = y, color = trt), size = 0.5, alpha = 0.5) +
geom_smooth(method = "lm", mapping = aes(x = x, y = y, color = trt), se = FALSE, linewidth = 2) +
scale_color_manual(values = c(color_base, color_accent, darkgray)) +
labs(color = "Treatment") +
theme_quarto() +
theme(legend.position.inside = c(0.85, 0.1))
g_sample_1dtr
```
:::
::: {.fragment .fade-in fragment-index=2}
推定した最適DTR(ポリシー)
```{r}
#| include: false
library(signs)
co_a <- signs(co["a"], accuracy = 1e-5)
co_x <- signs(co["x:a"], accuracy = 1e-5, add_plusses = TRUE)
```
$$
\hat{d}\left(x\right) = \mathrm{I}\left(`r co_a``r co_x`x > 0\right)
$$
:::
:::
:::
::::
## 価値の評価
:::: {.columns}
::: {.column width="100%" height="50%"}
$$
\begin{aligned}
V\left(d\right) &= \mathrm{E}\left[Q\left(X,1\right)\mathrm{I}\left(d\left(X\right) = 1\right) + Q\left(X,0\right)\mathrm{I}\left(d\left(X\right) = 0\right)\right] \\
\hat{V}\left(\hat{d}\right) &= \frac{1}{n}\sum_i\left[Q\left(x_i,1\right)\mathrm{I}\left(\hat{d}\left(x_i\right) = 1\right) + Q\left(x_i,0\right)\mathrm{I}\left(\hat{d}\left(x_i\right) = 0\right)\right]
\end{aligned}
$$
:::
::: {.column width="50%" height="50%"}
::: {.r-stack}
::: {.fragment .fade-out fragment-index=1}
```{r}
policy_1dtr <- function(x, co1, co2) {
return(as.integer(co1 + x * co2 > 0))
}
ite_1dtr <- tibble(
x = x, a = a, y = y,
a_opt = policy_1dtr(x, co["a"], co["x:a"]),
q1 = co[1] + x * co["x"] + 1 * co["a"]
+ 1 * x * co["x:a"],
q0 = co[1] + x * co["x"] + 0 * co["a"]
+ 0 * x * co["x:a"],
q_opt = ifelse(a_opt == 1, q1, q0)
) |> mutate(i = row_number())
```
`q1`、`q0`はそれぞれ $a=1$ 、$a=0$ に強制的に割り当てたときの推定期待値
:::
::: {.fragment .fade-in fragment-index=1}
```{r}
ate_1dtr <- ite_1dtr |>
summarise(mean_y = mean(y), v_hat = mean(q_opt))
```
```{r}
#| echo: false
t_ate_1dtr <- ate_1dtr |>
gt() |>
fmt_number(columns = c("mean_y", "v_hat"), decimals = 5) |>
# |> cols_label("mean_y" = "Mean of y", "v_hat" = "V-hat")
gt_theme_quarto()
t_ate_1dtr
```
推定した最適DTR(ポリシー)に従えば、アウトカムが $`r round(abs(ate_1dtr["mean_y"] - ate_1dtr["v_hat"]), 1)`$ ほど改善
※ あくまで学習データに基づく推測
:::
:::
:::
::: {.column width="50%" height="50%"}
```{r}
#| echo: false
t_ite_1dtr <- ite_1dtr |>
slice_head(n = 6) |>
gt() |>
fmt_number(columns = c("x", "y", "q1", "q0", "q_opt"), decimals = 3) |>
# cols_label("x" = html("x<sub>i</sub>"), "a_opt" = html("a<sub>opt</sub>"), "q1" = html("Q(x<sub>i</sub>,1)"), "q0" = html("Q(x<sub>i</sub>,0)"), "q_opt" = html("Q<sub>opt</sub>")) |>
gt_theme_quarto() |>
cols_move_to_start("i")
t_ite_1dtr
```
:::
::::
## 推定価値の評価
推定したDTRで治療を行った場合のテストデータの生成
```{r}
set.seed(20230928 + 1)
n <- 10000
x_test <- runif(n, 0, 1.5)
a_test <- policy_1dtr(x_test, co["a"], co["x:a"])
y_test <- rnorm(n, x_test + a_test * (1 - x_test), 1)
```
テストデータに対して推定DTRによる治療を行った場合の価値の推定
```{r}
ate_test_1dtr <- ate_1dtr |>
mutate(mean_y_test = mean(y_test))
```
```{r}
#| echo: false
t_ate_test_1dtr <- ate_test_1dtr |>
gt() |>
fmt_number(columns = c("mean_y", "v_hat", "mean_y_test"), decimals = 5) |>
# |> cols_label("mean_y" = "Mean of y", "v_hat" = "V-hat", "mean_y_test" = "Mean of y (test)")
gt_theme_quarto()
t_ate_test_1dtr
```
`mean_y_test`が学習データに基づく推定価値( $=\hat{V}\left(\hat{d}\right)=$ `v_hat`)に近い値を示したため、価値関数の推定はある程度正しかったと言える。
# 2段階DTR推定のデモンストレーション
## 使用するR-package
```{r}
library(DTRlearn2)
library(DynTxRegime)
library(DTRreg)
```
## 使用するデータ
```{r}
data(adhd)
attach(adhd)
```
```{r}
#| echo: false
t_adhd <- as_tibble(adhd) |>
slice_head(n = 7) |>
gt() |>
fmt_number(columns = c("o12"), decimals = 5) |>
gt_theme_quarto()
t_adhd
```
## 2段階Q学習(from R-package {DynTxRegime}) {.smaller}
ステージ1、2の会議モデルの変数(履歴)を定義
```{r}
H1 <- cbind(o11, o12, o13, o14)
H2 <- cbind(H1, a1, H1 * a1, r, o22, r * a1, o22 * a1)
```
$$
d^{opt}_2\left(h_2\right) = d^{opt}_2\left(x_1,a_1,x_2\right) = \underset{a_2} {\operatorname{argmax}}\ \mathrm{E}\left[Y\left(a_1,a_2\right)\mid X_1 = x_1,X_2\left(a_1\right)=x_2\right]
$$
```{r}
#| output: false
q_main2 <- buildModelObj(model = ~ H2, solver.method = "lm")
q_cont2 <- buildModelObj(model = ~ H2, solver.method = "lm")
ql2 <- qLearn(moMain = q_main2, moCont = q_cont2, data = adhd, response = adhd["y"], txName = "a2")
```
`y`に対する線形回帰モデルの最小二乗推定量を求めて、ステージ2の最適(潜在)アウトカム`ql2`を計算
$$
d^{opt}_1\left(h_1\right) = d^{opt}_1\left(x_1\right) = \underset{a_1} {\operatorname{argmax}}\ \mathrm{E} \left[\underset{a_2} {\operatorname{max}}\ \mathrm{E}\left[Y\left(a_1,a_2\right)\mid X_1,X_2\left(a_1\right)\right]\mid X_1 = x_1\right]
$$
```{r}
#| output: false
q_main1 <- buildModelObj(model = ~ H1, solver.method = "lm")
q_cont1 <- buildModelObj(model = ~ H1, solver.method = "lm")
ql1 <- qLearn(moMain = q_main1, moCont = q_cont1, data = adhd, response = ql2, txName = "a1")
```
`ql2`に対する線形回帰モデルの最小二乗推定量を求める。