-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_single_database.py
248 lines (185 loc) · 10.7 KB
/
train_single_database.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import os
import argparse
import time
import numpy as np
import torch
import torch.nn as nn
from torchvision import transforms
import torch.backends.cudnn as cudnn
import IQADataset
import models.stairIQA_resnet as stairIQA_resnet
from utils import performance_fit
def parse_args():
"""Parse input arguments. """
parser = argparse.ArgumentParser(description="In the wild Image Quality Assessment")
parser.add_argument('--gpu', help="GPU device id to use [0]", default=0, type=int)
parser.add_argument('--num_epochs', help='Maximum number of training epochs.', default=30, type=int)
parser.add_argument('--batch_size', help='Batch size.', default=40, type=int)
parser.add_argument('--resize', help='resize.', type=int)
parser.add_argument('--crop_size', help='crop_size.',type=int)
parser.add_argument('--lr', type=float, default=0.00001)
parser.add_argument('--decay_ratio', type=float, default=0.9)
parser.add_argument('--decay_interval', type=float, default=10)
parser.add_argument('--snapshot', help='Path of model snapshot.', default='', type=str)
parser.add_argument('--results_path', type=str)
parser.add_argument('--database_dir', type=str)
parser.add_argument('--model', default='ResNet', type=str)
parser.add_argument('--multi_gpu', type=bool, default=False)
parser.add_argument('--print_samples', type=int, default = 50)
parser.add_argument('--database', default='FLIVE', type=str)
parser.add_argument('--test_method', default='five', type=str,
help='use the center crop or five crop to test the image')
args = parser.parse_args()
return args
if __name__ == '__main__':
args = parse_args()
gpu = args.gpu
cudnn.enabled = True
num_epochs = args.num_epochs
batch_size = args.batch_size
lr = args.lr
decay_interval = args.decay_interval
decay_ratio = args.decay_ratio
snapshot = args.snapshot
database = args.database
print_samples = args.print_samples
results_path = args.results_path
database_dir = args.database_dir
resize = args.resize
crop_size = args.crop_size
best_all = np.zeros([10, 4])
for exp_id in range(10):
print('The current exp_id is ' + str(exp_id))
if not os.path.exists(snapshot):
os.makedirs(snapshot)
trained_model_file = os.path.join(snapshot, 'train-ind-{}-{}-exp_id-{}.pkl'.format(database, args.model, exp_id))
print('The save model name is ' + trained_model_file)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if torch.cuda.is_available():
os.environ["CUDA_VISIBLE_DEVICES"] = str(gpu)
if database == 'Koniq10k':
train_filename_list = 'csvfiles/Koniq10k_train_'+str(exp_id)+'.csv'
test_filename_list = 'csvfiles/Koniq10k_test_'+str(exp_id)+'.csv'
elif database == 'FLIVE':
train_filename_list = 'csvfiles/FLIVE_train_'+str(exp_id)+'.csv'
test_filename_list = 'csvfiles/FLIVE_test_'+str(exp_id)+'.csv'
elif database == 'FLIVE_patch':
train_filename_list = 'csvfiles/FLIVE_patch_train_'+str(exp_id)+'.csv'
test_filename_list = 'csvfiles/FLIVE_patch_test_'+str(exp_id)+'.csv'
elif database == 'LIVE_challenge':
train_filename_list = 'csvfiles/LIVE_challenge_train_'+str(exp_id)+'.csv'
test_filename_list = 'csvfiles/LIVE_challenge_test_'+str(exp_id)+'.csv'
elif database == 'SPAQ':
train_filename_list = 'csvfiles/SPQA_train_'+str(exp_id)+'.csv'
test_filename_list = 'csvfiles/SPQA_test_'+str(exp_id)+'.csv'
elif database == 'BID':
train_filename_list = 'csvfiles/BID_train_'+str(exp_id)+'.csv'
test_filename_list = 'csvfiles/BID_test_'+str(exp_id)+'.csv'
print(train_filename_list)
print(test_filename_list)
# load the network
if args.model == 'stairIQA_resnet':
model = stairIQA_resnet.resnet50(pretrained = True)
transformations_train = transforms.Compose([transforms.Resize(resize),transforms.RandomCrop(crop_size), \
transforms.ToTensor(),transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])
if args.test_method == 'one':
transformations_test = transforms.Compose([transforms.Resize(resize),transforms.CenterCrop(crop_size), \
transforms.ToTensor(),transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])
elif args.test_method == 'five':
transformations_test = transforms.Compose([transforms.Resize(resize),transforms.FiveCrop(crop_size), \
(lambda crops: torch.stack([transforms.ToTensor()(crop) for crop in crops])), \
(lambda crops: torch.stack([transforms.Normalize(mean=[0.485, 0.456, 0.406], \
std=[0.229, 0.224, 0.225])(crop) for crop in crops]))])
train_dataset = IQADataset.IQA_dataloader(database_dir, train_filename_list, transformations_train, database)
test_dataset = IQADataset.IQA_dataloader(database_dir, test_filename_list, transformations_test, database)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True, num_workers=8)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=1, shuffle=False, num_workers=8)
if args.multi_gpu:
model = torch.nn.DataParallel(model)
model = model.to(device)
else:
model = model.to(device)
criterion = nn.MSELoss().to(device)
param_num = 0
for param in model.parameters():
param_num += int(np.prod(param.shape))
print('Trainable params: %.2f million' % (param_num / 1e6))
optimizer = torch.optim.Adam(model.parameters(), lr=lr, weight_decay=0.0000001)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=decay_interval, gamma=decay_ratio)
print("Ready to train network")
best_test_criterion = -1 # SROCC min
best = np.zeros(4)
n_train = len(train_dataset)
n_test = len(test_dataset)
for epoch in range(num_epochs):
# train
model.train()
batch_losses = []
batch_losses_each_disp = []
session_start_time = time.time()
for i, (image, mos) in enumerate(train_loader):
image = image.to(device)
mos = mos[:,np.newaxis]
mos = mos.to(device)
mos_output = model(image)
loss = criterion(mos_output, mos)
batch_losses.append(loss.item())
batch_losses_each_disp.append(loss.item())
optimizer.zero_grad() # clear gradients for next train
torch.autograd.backward(loss)
optimizer.step()
if (i+1) % print_samples == 0:
session_end_time = time.time()
avg_loss_epoch = sum(batch_losses_each_disp) / print_samples
print('Epoch: %d/%d | Step: %d/%d | Training loss: %.4f' % \
(epoch + 1, num_epochs, i + 1, len(train_dataset) // batch_size, \
avg_loss_epoch))
batch_losses_each_disp = []
print('CostTime: {:.4f}'.format(session_end_time - session_start_time))
session_start_time = time.time()
avg_loss = sum(batch_losses) / (len(train_dataset) // batch_size)
print('Epoch %d averaged training loss: %.4f' % (epoch + 1, avg_loss))
scheduler.step()
lr_current = scheduler.get_last_lr()
print('The current learning rate is {:.06f}'.format(lr_current[0]))
# Test
model.eval()
y_output = np.zeros(n_test)
y_test = np.zeros(n_test)
with torch.no_grad():
for i, (image, mos) in enumerate(test_loader):
if args.test_method == 'one':
image = image.to(device)
y_test[i] = mos.item()
mos = mos.to(device)
outputs = model(image)
y_output[i] = outputs.item()
elif args.test_method == 'five':
bs, ncrops, c, h, w = image.size()
y_test[i] = mos.item()
image = image.to(device)
mos = mos.to(device)
outputs = model(image.view(-1, c, h, w))
outputs_avg = outputs.view(bs, ncrops, -1).mean(1)
y_output[i] = outputs_avg.item()
test_PLCC, test_SRCC, test_KRCC, test_RMSE = performance_fit(y_test, y_output)
print("Test results: SROCC={:.4f}, KROCC={:.4f}, PLCC={:.4f}, RMSE={:.4f}".format(test_SRCC, test_KRCC, test_PLCC, test_RMSE))
if test_SRCC > best_test_criterion:
print("Update best model using best_val_criterion ")
torch.save(model.state_dict(), trained_model_file)
best[0:4] = [test_SRCC, test_KRCC, test_PLCC, test_RMSE]
best_test_criterion = test_SRCC # update best val SROCC
print("The best Test results: SROCC={:.4f}, KROCC={:.4f}, PLCC={:.4f}, RMSE={:.4f}".format(test_SRCC, test_KRCC, test_PLCC, test_RMSE))
print(database)
best_all[exp_id, :] = best
print("The best Val results: SROCC={:.4f}, KROCC={:.4f}, PLCC={:.4f}, RMSE={:.4f}".format(best[0], best[1], best[2], best[3]))
print('*************************************************************************************************************************')
best_median = np.median(best_all, 0)
best_mean = np.mean(best_all, 0)
best_std = np.std(best_all, 0)
print('*************************************************************************************************************************')
print(best_all)
print("The median val results: SROCC={:.4f}, KROCC={:.4f}, PLCC={:.4f}, RMSE={:.4f}".format(best_median[0], best_median[1], best_median[2], best_median[3]))
print("The mean val results: SROCC={:.4f}, KROCC={:.4f}, PLCC={:.4f}, RMSE={:.4f}".format(best_mean[0], best_mean[1], best_mean[2], best_mean[3]))
print("The std val results: SROCC={:.4f}, KROCC={:.4f}, PLCC={:.4f}, RMSE={:.4f}".format(best_std[0], best_std[1], best_std[2], best_std[3]))
print('*************************************************************************************************************************')