forked from yogi9879/Final
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathml1.py
38 lines (22 loc) · 1.01 KB
/
ml1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import numpy as np
import pandas as pd
from sklearn.linear_model import LinearRegression
def model_1(data):
# data = pd.read_csv("finaldata.csv")
# Feature Scaling
X_train = data.iloc[:,2:8]
for i in range(len(X_train.columns)):
X_train.iloc[:,i]= X_train.iloc[:,i]/(np.max(X_train.iloc[:,i])-np.min(X_train.iloc[:,i])) - (np.mean(X_train.iloc[:,i])/(np.max(X_train.iloc[:,i])-np.min(X_train.iloc[:,i])))
X_train = X_train.fillna(0)
Y_train = data.iloc[:,-1]
model = LinearRegression()
lr=model.fit(X_train,Y_train)
predict = lr.predict(X_train)
pred = abs(predict)
predict1 = np.zeros(len(predict))
for i in range(len(pred)):
predict1[i] = pred[i]/(1+pred[i])
predict1[i]=predict1[i] *100
predict1[i] = round(predict1[i])
cities = data.iloc[:,0]
return predict1[5]