-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdump_bert_client.py
63 lines (51 loc) · 2.46 KB
/
dump_bert_client.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import sys; sys.path.append('../common');
from helper import *
from bert_serving.client import BertClient
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='MedFilter')
parser.add_argument("--embed", default="bert_ft_new", type=str, help=" ")
parser.add_argument("--pool", default="mean_sec_last", type=str, help=" ")
parser.add_argument("--max_seq_len", default=64, type=int, help=" ")
parser.add_argument("--num_proc", default=16, type=int, help=" ")
parser.add_argument("--data_dir", default="/data/", help='Directory containing dataset')
args = parser.parse_args()
embed_map = {}
all_data = []
for line in open(args.data_dir + 'main.json'):
conv = json.loads(line)
_id = conv['meta']['id']
_, conv['transcript'] = zip(*sorted(conv['transcript'].items(), key = lambda x: int(x[0])))
all_data.append((_id, conv['transcript']))
def process_data(pid, trans_list):
bc = BertClient(check_length=False)
result = []
for i, (_id, trans) in enumerate(trans_list):
embed = []
for chunk in getChunks(trans, 64):
embed.append(bc.encode([x['txt'] for x in chunk]))
result.append((_id, np.concatenate(embed, axis=0)))
if i % 100 == 0: print('Completed [{}] {}, {}'.format(pid, i, time.strftime("%d_%m_%Y") + '_' + time.strftime("%H:%M:%S")))
print('All jobs Over!')
return result
num_procs = args.num_proc
chunks = partition(all_data, num_procs)
data_list = Parallel(n_jobs = num_procs)(delayed(process_data)(i, chunk) for i, chunk in enumerate(chunks))
embed_map = dict(mergeList(data_list))
dump_dir = '{}/embeddings/{}'.format(args.data_dir, args.embed)
os.system('mkdir -p {}'.format(dump_dir))
for _id, embed in embed_map.items():
pickle.dump({'embeddings': embed}, open('{}/{}.pkl'.format(dump_dir, _id), 'wb'))
"""
python ./transformers/src/transformers/convert_bert_pytorch_checkpoint_to_original_tf.py \
--model_name bert_model \
--pytorch_model_path ./bert_models/bert_plain_model_28_03_2020_20:39:24/pytorch.bin \
--tf_cache_dir ./bert_models/bert_plain_model_28_03_2020_20:39:24/tf_model
cd ./bert_models/bert_plain_model_28_03_2020_20:39:24/tf_model/
cp <dir>/vocab.txt .
cp <dir>/bert_config.json .
mv bert_base_uncased.ckpt.index bert_model.ckpt.index
mv bert_base_uncased.ckpt.meta bert_model.ckpt.meta
mv bert_base_uncased.ckpt.data-00000-of-00001 bert_model.ckpt.data-00000-of-00001
cd ..
bert-serving-start -model_dir ./tf_model/ -num_worker=2 -device_map 3 -max_seq_len 64
"""