forked from ShivamRajSharma/Vision-Transformer
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
101 lines (80 loc) · 2.95 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
import config
import dataloader
import engine
import ImageTransformer
import transformers
import torch
import torch.nn as nn
import numpy as np
import torchvision
import albumentations as alb
def run():
train_dataset = torchvision.datasets.CIFAR10(root='input/data', train=True, download = True)
val_dataset = torchvision.datasets.CIFAR10(root='input/data', train=False, download = True)
train_transform = alb.Compose([
alb.Resize(config.image_height, config.image_width, always_apply=True),
alb.Normalize(config.mean, config.std, always_apply=True),
alb.HorizontalFlip(p=0.1),
alb.RandomBrightness(p=0.2),
alb.RandomContrast(p=0.1),
alb.RGBShift(p=0.1),
alb.GaussNoise(p=0.1),
])
val_transforms = alb.Compose([
alb.Resize(config.image_height, config.image_width, always_apply=True),
alb.Normalize(config.mean, config.std, always_apply=True)
])
train_data = dataloader.dataloader(train_dataset, train_transform)
val_data = dataloader.dataloader(val_dataset, val_transforms)
train_loader = torch.utils.data.DataLoader(
train_data,
num_workers=4,
pin_memory=True,
batch_size=config.Batch_Size
)
val_loader = torch.utils.data.DataLoader(
val_data,
num_workers=4,
pin_memory=True,
batch_size=config.Batch_Size
)
model = ImageTransformer.ViT(
patch_height = 16,
patch_width = 16,
embedding_dims = 768,
dropout = 0.1,
heads = 4,
num_layers = 4,
forward_expansion = 4,
max_len = int((32*32)/(16*16)),
layer_norm_eps = 1e-5,
num_classes = 10,
)
if torch.cuda.is_available():
accelarator = 'cuda'
else:
accelarator = 'cpu'
device = torch.device(accelarator)
torch.backends.cudnn.benchmark = True
model = model.to(device)
optimizer = transformers.AdamW(model.parameters(), lr=config.LR, weight_decay=config.weight_decay)
num_training_steps = int((config.Epochs*len(train_dataset))/config.Batch_Size)
scheduler = transformers.get_linear_schedule_with_warmup(
optimizer,
num_warmup_steps = int(0.1*num_training_steps),
num_training_steps = num_training_steps
)
best_acc = 0
best_model = 0
for epoch in range(config.Epochs):
train_acc, train_loss = engine.train_fn(model, train_loader, optimizer, scheduler, device)
val_acc, val_loss = engine.eval_fn(model, val_loader, device)
print(f'\nEPOCH = {epoch+1} / {config.Epochs} | LR = {scheduler.get_last_lr()[0]}')
print(f'TRAIN ACC = {train_acc*100}% | TRAIN LOSS = {train_loss}')
print(f'VAL ACC = {val_acc*100}% | VAL LOSS = {val_loss}')
if val_acc > best_acc:
best_acc = val_acc
best_model = model.state_dict()
torch.save(best_model, config.Model_Path)
if __name__ == "__main__":
run()