-
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathupdate.py
546 lines (445 loc) · 24.8 KB
/
update.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
import requests
from bs4 import BeautifulSoup
import urllib.parse
import datetime
from datetime import date
import re
import os
import glob
import pandas as pd
import subprocess
import sheet2csv
import hashlib,time
from dotenv import load_dotenv
from zipfile import ZipFile
from io import BytesIO
import email.utils
load_dotenv()
GOOGLE_API_KEY = os.environ["GOOGLE_API_KEY"]
SHEET_OVERRIDES = "1gsIkUsvO-2_atHTsU9UcH2q69Js9PuvskTbtuY3eEWQ"
RANGE_OVERRIDES = "Overrides!A1:AA"
type_map = {
'SPLOŠNA DEJAVNOST - SPLOŠNA AMBULANTA': 'gp',
'SPLOŠNA AMB. - BOLJŠA DOSTOPNOST DO IOZ': 'gp-x',
'SPLOŠNA AMB. ZA NEOPREDELJENE ZAV. OSEBE': 'gp-f',
'SPLOŠNA DEJ.-OTROŠKI IN ŠOLSKI DISPANZER': 'ped',
'OTR. ŠOL. DISP.-BOLJŠA DOSTOPNOST DO IOZ': 'ped-x',
'ZOBOZDR. DEJAVNOST-ZDRAVLJENJE ODRASLIH': 'den',
'ZOBOZDR. DEJAVNOST-ZDRAVLJENJE MLADINE': 'den-y',
'ZOBOZDR. DEJAVNOST-ZDRAVLJENJE ŠTUDENTOV': 'den-s',
'SPLOŠNA DEJAVNOST - DISPANZER ZA ŽENSKE': 'gyn'
}
typeid_map = {
302001: 'gp',
302064: 'gp-x',
302067: 'gp-f',
327009: 'ped',
327065: 'ped-x',
404101: 'den',
404103: 'den-y',
404105: 'den-s',
306007: 'gyn',
}
accepts_map = {
'DA': 'y',
'NE': 'n'
}
def sha1sum(fname):
h = hashlib.sha1()
try:
with open(fname, 'rb') as f:
for chunk in iter(lambda: f.read(4096), b''):
h.update(chunk)
return h.hexdigest()
except FileNotFoundError:
return None
def write_timestamp_file(filename: str, old_hash: str):
if old_hash != sha1sum(filename):
with open(f'{filename}.timestamp', 'w', newline='') as f:
f.write(f'{int(time.time())}\n')
def convert_to_csv(zzzsid_map):
doctors = []
for group in ["zdravniki", "zobozdravniki", "ginekologi", "za-boljšo-dostopnost", "za-neopredeljene"]:
filename = max(glob.glob(f"zzzs/????/??/????-??-??_{group}.xlsx"))
print(f"Source: {group} - {filename}")
df = pd.read_excel(io=filename, sheet_name='Podatki', skiprows=9).dropna()
if group == "za-neopredeljene":
print("Converting za neopredeljene")
if len(df.columns) == 8:
print("...introduced with 2023-02-10")
df.columns = ['unit', 'institutionID', 'name', 'address', 'city', 'typeID', 'type', 'load']
# TODO: Use the new columns instead of dropping them:
df.drop(columns=['institutionID', 'typeID'], inplace=True)
# add missing columns with default values
df['doctor'] = 'Ambulanta za neopredeljene'
df['availability'] = None
df['accepts'] = 'DA'
else:
print(f"Unsupported za neopredeljene source columns! count={len(df.columns)}: {df.columns}")
raise
elif group == "za-boljšo-dostopnost":
print("Converting za boljšo dostopnost")
df.columns = ['unit', 'institutionID', 'name', 'address', 'city', 'doctorID', 'doctor', 'typeID', 'type', 'availability', 'load', 'accepts', 'acceptsOver']
df['doctor'] = df['doctor'].str.title()
# TODO: Use the new ID columns instead of dropping them:
df.drop(columns=['institutionID', 'doctorID', 'typeID', 'acceptsOver'], inplace=True)
elif group == "zobozdravniki":
print("Converting dentists list")
df.columns = ['unit', 'institutionID', 'name', 'address', 'city', 'doctorID', 'doctor', 'typeID', 'type', 'accepts', 'availability', 'load']
df['doctor'] = df['doctor'].str.title()
# TODO: Use the new ID columns instead of dropping them:
df.drop(columns=['institutionID', 'doctorID', 'typeID'], inplace=True)
else:
print("Converting doctors list")
if len(df.columns) == 12 or len(df.columns) == 13 or len(df.columns) == 14 or len(df.columns) == 16:
print("...version after 2023-02-10")
if len(df.columns) == 14 or len(df.columns) == 13:
print("...version after 2024-05-10: ignore new 'Specializant' column")
df.drop(columns=['Specializant'], inplace=True)
if len(df.columns) == 16:
print("...version after 2024-07-19: ignore 3 new columns for now")
df.drop(columns=['Zdravnik še sprejema zavarovane osebe'], inplace=True)
df.drop(columns=['Zdravnik ima v ambulanto družinske medicine vključene dodatne 0,5 diplomirane medicinske sestre in je dolžan sprejemati zavarovane osebe, saj ne dosega dogovorjenega dodatnega števila 300 glavarinskih količnikov na tim (obseg zaposlitve)'], inplace=True)
df.drop(columns=['Specializant'], inplace=True)
df.columns = ['unit', 'institutionID', 'name', 'address', 'city', 'doctorID', 'doctor', 'typeID', 'type', 'accepts', 'availability', 'load']
df['doctor'] = df['doctor'].str.title()
# TODO: Use the new ID columns instead of dropping them:
df.drop(columns=['institutionID', 'doctorID', 'typeID'], inplace=True)
elif len(df.columns) == 9:
print("Detected early version, prior to 2023-02-10")
df.columns = ['unit', 'name', 'address', 'city', 'doctor', 'type', 'availability', 'load', 'accepts']
df['doctor'] = df['doctor'].str.title()
# TODO: insert dummy new ID columns if needed.
else:
print(f"Unsupported za opredeljene source columns! count={len(df.columns)}: {df.columns}")
raise
df['doctor'] = df['doctor'].str.strip().replace('\s+', ' ', regex=True)
df['type'] = df['type'].str.strip().map(type_map)
df['accepts'] = df['accepts'].str.strip().map(accepts_map)
df['name'] = df['name'].str.strip()
df['address'] = df['address'].str.strip()
df['city'] = df['city'].str.strip()
df['unit'] = df['unit'].str.strip()
df['zzzsid'] = df['name'].map(zzzsid_map)
df = df.reindex(['doctor', 'type', 'zzzsid', 'accepts', 'availability', 'load', 'name', 'address', 'city', 'unit'], axis='columns')
doctors.append(df)
doctors = pd.concat(doctors, ignore_index=True)
institutions = doctors.groupby(['zzzsid', 'name','address','city', 'unit'])['doctor'].apply(list).reset_index()
institutions.drop("doctor", axis='columns', inplace=True)
institutions.set_index('zzzsid', inplace=True)
institutions.index.rename('id_inst', inplace=True)
institutions.sort_values(by=['name','unit'], inplace=True)
institutions.to_csv('csv/institutions.csv')
doctors.drop(['name', 'address', 'city', 'unit'], axis='columns', inplace=True)
doctors.rename(columns={'zzzsid': 'id_inst'}, inplace=True)
doctors.sort_values(by=[*doctors], inplace=True) # sort by all columns
# reindex:
doctors.set_index(['doctor','type','id_inst'], inplace=True)
doctors.to_csv('csv/doctors.csv')
doctors.query('id_inst != id_inst').to_csv('csv/doctors-without-institution.csv')
def append_overrides():
filename = "csv/overrides.csv"
print(f"Get overrides from GSheet to {filename}")
try:
sheet2csv.sheet2csv(id=SHEET_OVERRIDES, range=RANGE_OVERRIDES, api_key=GOOGLE_API_KEY, filename=filename)
except Exception as e:
print("Failed to import {}".format(filename))
raise e
doctors = pd.read_csv('csv/doctors.csv', index_col=['doctor','type','id_inst'])
overrides = pd.read_csv('csv/overrides.csv', index_col=['doctor','type','id_inst'], parse_dates=['date_override'])
if not overrides.index.is_unique:
print ("============= DUPLICATES ============")
duplicates = overrides[overrides.index.duplicated(keep=False)]
print (duplicates)
exit(1)
doctors = doctors.join(overrides)
doctors.to_csv('csv/doctors.csv')
used_overrides_accepts=doctors.loc[doctors['accepts_override'].notna() & (doctors['accepts'] != doctors['accepts_override']), ['accepts', 'accepts_override', 'date_override']]
used_overrides_accepts.sort_values(by=['date_override'], inplace=True)
print(f"Doctors with used accept override: {len(used_overrides_accepts)}")
if not used_overrides_accepts.empty:
with pd.option_context('display.max_rows', None,'display.max_columns', None):
print(used_overrides_accepts.to_string())
redundant_overrides_accepts=doctors.loc[doctors['accepts'] == doctors['accepts_override'], ['accepts', 'accepts_override', 'date_override']]
redundant_overrides_accepts.sort_values(by=['date_override'], inplace=True)
print(f"Doctors with redundant accept override: {len(redundant_overrides_accepts)}")
if not redundant_overrides_accepts.empty:
with pd.option_context('display.max_rows', None,'display.max_columns', None):
print(redundant_overrides_accepts.to_string())
overrides.count().to_csv('csv/stats-overrides.csv')
overrides.groupby(['date_override']).count().to_csv('csv/stats-overrides-by-day.csv')
overrides.groupby(['note_override','accepts_override'])['accepts_override'].count().to_csv('csv/stats-overrides-accepts.csv')
def geocode_addresses():
xlsxAddresses = pd.read_csv('csv/institutions.csv', usecols=['city','address']).rename(columns={'city':'postZZZS','address':'addressZZZS'})
apiAddresses = pd.read_csv('zzzs/institutions-all.csv', usecols=['posta','naslov']).rename(columns={'posta':'postZZZS','naslov':'addressZZZS'})
addressBookAddresses = pd.read_csv('csv/address-book.csv', usecols=['post','address']).rename(columns={'post':'postZZZS','address':'addressZZZS'})
addresses = pd.concat([xlsxAddresses, apiAddresses, addressBookAddresses], ignore_index=True)
addresses['postZZZS'] = addresses['postZZZS'].str.upper()
addresses['addressZZZS'] = addresses['addressZZZS'].str.upper()
addresses.sort_values(by=['postZZZS','addressZZZS'], inplace=True)
addresses.drop_duplicates(inplace=True)
addresses.set_index(['postZZZS','addressZZZS'], inplace=True)
addresses.to_csv('gurs/addresses-zzzs.csv')
try:
subprocess.run(["geocode", "csv", "--in", "gurs/addresses-zzzs.csv", "--out", "gurs/addresses.csv", "--zipCol", "1", "--addressCol", "2", "--appendAll"])
except FileNotFoundError:
print("geocode not found, skipping.")
addresses = pd.read_csv('csv/doctors.csv', usecols=['post', 'address', 'city']).rename(columns={'post':'postOver', 'address':'addressOver', 'city':'cityOver'}).dropna(subset=['postOver','addressOver'])
addresses.sort_values(by=['postOver', 'addressOver', 'cityOver'], inplace=True)
addresses.drop_duplicates(inplace=True)
addresses.set_index(['postOver', 'addressOver', 'cityOver'], inplace=True)
addresses.to_csv('gurs/addresses-overrides.csv')
try:
subprocess.run(["geocode", "csv", "--in", "gurs/addresses-overrides.csv", "--out", "gurs/addresses-overrides-geocoded.csv", "--zipCol", "1", "--addressCol", "2", "--cityCol", "3", "--appendAll"])
except FileNotFoundError:
print("geocode not found, skipping.")
def add_gurs_geodata():
institutions = pd.read_csv('csv/institutions.csv', index_col=['id_inst'])
dfgeo=pd.read_csv('gurs/addresses.csv', index_col=['postZZZS','addressZZZS'], dtype=str)
dfgeo.fillna('', inplace=True)
dfgeo['address'] = dfgeo.apply(lambda x: f'{x.street} {x.housenumber}{x.housenumberAppendix}'.strip() if x.housenumber else x.name[1], axis = 1)
dfgeo['post'] = dfgeo.apply(lambda x: f'{x.zipCode} {x.zipName}'.strip() if x.zipCode else x.name[0], axis = 1)
dfgeo['municipality'] = dfgeo.apply(lambda x: x.municipality if x.municipality else '???', axis = 1)
institutions = institutions.merge(dfgeo[['address','post','city','municipalityPart','municipality','lat','lon']], how = 'left', left_on = ['city','address'], right_index=True, suffixes=['_zzzs', ''])
institutions.drop(['address_zzzs','city_zzzs'], axis='columns', inplace=True)
institutions.to_csv('csv/institutions.csv')
doctors = pd.read_csv('csv/doctors.csv', index_col=['doctor', 'type', 'id_inst'])
dfgeo=pd.read_csv('gurs/addresses-overrides-geocoded.csv', index_col=['postOver','addressOver','cityOver'], dtype=str)
dfgeo.fillna('', inplace=True)
dfgeo['address'] = dfgeo.apply(lambda x: f'{x.street} {x.housenumber}{x.housenumberAppendix}'.strip() if x.housenumber else x.name[1], axis = 1)
dfgeo['post'] = dfgeo.apply(lambda x: f'{x.zipCode} {x.zipName}'.strip() if x.zipCode else x.name[0], axis = 1)
dfgeo['city'] = dfgeo.apply(lambda x: x.city if x.city else x.name[2], axis = 1)
dfgeo['municipality'] = dfgeo.apply(lambda x: x.municipality if x.municipality else '???', axis = 1)
doctors = doctors.merge(dfgeo[['address','post','city','municipalityPart','municipality','lat','lon']], how = 'left', left_on = ['post','address','city'], right_index=True, suffixes=['Over', ''])
doctors.drop(['postOver','addressOver','cityOver'], axis='columns', inplace=True)
doctors.to_csv('csv/doctors.csv')
def get_zzzs_api_data_all():
# https://api.zzzs.si/covid-sledilnik/0 ... 1600 by pages (of 100 records)
apiInstitutions = []
idx = 0
maxIdx = 1
while idx < maxIdx:
print(f"Fetching page from ZZZS API at index: {idx}")
apiUrl = f"https://api.zzzs.si/covid-sledilnik/{idx}"
r = requests.get(apiUrl)
r.raise_for_status()
j = r.json()
df = pd.DataFrame.from_dict(j)
df.drop(['@entryid'], axis='columns', inplace=True)
df.set_index('zzzsSt', inplace=True)
apiInstitutions.append(df)
contentRangeHeader = r.headers['Content-Range']
contentRangeNumbers = re.findall(r'\d+', contentRangeHeader)
idx = int(contentRangeNumbers[1])+1
maxIdx = int(contentRangeNumbers[2])
df = pd.concat(apiInstitutions).drop_duplicates()
df.sort_values(by=[*df], inplace=True) # sort by all columns
df.to_csv('zzzs/institutions-all.csv')
def get_zzzs_api_data_by_category():
# keys for ZZZS API calls, add as needed, see https://www.zzzs.si/zzzs-api/izvajalci-zdravstvenih-storitev/po-dejavnosti/
zzzsApiKeys=[
('Splošna dejavnost', 'Splošna ambulanta'),
('Splošna dejavnost', 'Otroški in šolski dispanzer'),
('Zobozdravstvo', 'Zobozdravstvo za odrasle'),
('Zobozdravstvo', 'Zobozdravstvo za mladino'),
('Zobozdravstvo', 'Zobozdravstvo za študente'),
('Splošna dejavnost', 'Dispanzer za ženske')
]
apiInstitutions = []
for key in zzzsApiKeys:
print(f"Fetching from ZZZS API: {key}")
apiUrl = f"https://www.zzzs.si/zzzs-api/izvajalci-zdravstvenih-storitev/po-dejavnosti/?ajax=1&act=get-izvajalci&type=dejavnosti&lang=0&kat={key[0]}&key={key[1]}"
r = requests.get(apiUrl)
r.raise_for_status()
j = r.json()
df = pd.DataFrame.from_dict(j)
df.drop(['@entryid'], axis='columns', inplace=True)
df.set_index('zzzsSt', inplace=True)
apiInstitutions.append(df)
# get also gp-x
# https://www.zzzs.si/zzzs-api/izvajalci-zdravstvenih-storitev/po-vrsti-izvajalcev/?ajax=1&act=get-izvajalci&type=vrste&key=Dru%C5%BEinski%2C%20otro%C5%A1ki%20in%20%C5%A1olski%20zdravnik
zzzsApiKeys=[
'Dru%C5%BEinski%2C%20otro%C5%A1ki%20in%20%C5%A1olski%20zdravnik'
]
for key in zzzsApiKeys:
print(f"Fetching from ZZZS API: {key}")
apiUrl = f"https://www.zzzs.si/zzzs-api/izvajalci-zdravstvenih-storitev/po-vrsti-izvajalcev/?ajax=1&act=get-izvajalci&type=vrste&key={key}"
r = requests.get(apiUrl)
r.raise_for_status()
j = r.json()
df = pd.DataFrame.from_dict(j)
df.drop(['@entryid'], axis='columns', inplace=True)
df.set_index('zzzsSt', inplace=True)
apiInstitutions.append(df)
df = pd.concat(apiInstitutions).drop_duplicates()
df.sort_values(by=[*df], inplace=True) # sort by all columns
df.to_csv('zzzs/institutions-by-category.csv')
def get_zzzs_id_map():
df = pd.read_csv('zzzs/institutions-by-category.csv', index_col=['naziv'])
# create lookup dictionary for ZZZS ID
zzzsid_map = df.reset_index()[['zzzsSt', 'naziv']].set_index('naziv').to_dict()['zzzsSt']
missing_zzzsid = {
# renamed, needed temporary until new .xlsx arepublished with same new names:
# 'ZDRAVSTVENI DOM TRBOVLJE TRBOVLJE, RUDARSKA CESTA 12': "102320", # was renamed
# 'MDENT, ZOBOZDRAVSTVENE STORITVE, MIHAJLO FRANGOV S.P.': "7155880",
# 'DOLINAR- KRESE HERMINA - ZASEBNA OTROŠKA IN ŠOLSKA ORDINACIJA': "8524237",
#'ZASEBNI ŠOLSKI DISPANZER JELKA HOSTNIK, DR. MED., SPEC. ŠOL. MED.': "", # TODO
# larger, split providers
'OSNOVNO ZDRAVSTVO GORENJSKE, OE ZDRAVSTVENI DOM BLED, ZDRAVSTVENI DOM BOHINJ': 'ozgbb',
'OSNOVNO ZDRAVSTVO GORENJSKE, OE ZDRAVSTVENI DOM JESENICE': 'ozgje',
'OSNOVNO ZDRAVSTVO GORENJSKE, OE ZDRAVSTVENI DOM KRANJ': 'ozgkr',
'OSNOVNO ZDRAVSTVO GORENJSKE, OE ZDRAVSTVENI DOM RADOVLJICA': 'ozgra',
'OSNOVNO ZDRAVSTVO GORENJSKE, OE ZDRAVSTVENI DOM TRŽIČ': 'ozgtr',
'OSNOVNO ZDRAVSTVO GORENJSKE, OE ZDRAVSTVENI DOM ŠKOFJA LOKA': 'ozgsl',
'ZD LJUBLJANA - BEŽIGRAD': 'zdlbe',
'ZD LJUBLJANA - CENTER': 'zdlce',
'ZD LJUBLJANA - MOSTE - POLJE': 'zdlmp',
'ZD LJUBLJANA - VIČ - RUDNIK': 'zdlvr',
'ZD LJUBLJANA - ŠENTVID': 'zdlse',
'ZD LJUBLJANA - ŠIŠKA': 'zdlsi',
}
for key, value in dict(missing_zzzsid).items():
if not key in zzzsid_map:
zzzsid_map[key] = value
return zzzsid_map
def add_zzzs_api_data():
# apiInstitutions = pd.read_csv('zzzs/institutions-all.csv', index_col=['naziv'])
apiInstitutions = pd.read_csv('zzzs/institutions-by-category.csv', index_col=['naziv'])
apiInstitutions['zzzsSt'] = apiInstitutions['zzzsSt'].astype(int).astype(str)
institutions = pd.read_csv('csv/institutions.csv', index_col=['id_inst'])
institutions = institutions.merge(apiInstitutions[['zzzsSt','tel','splStran']], how = 'left', left_on = ['name'], right_index=True, suffixes=['', '_api'])
institutions.index.rename('id_inst', inplace=True)
institutions.rename(columns={"tel": "phone", "splStran": "website"}, inplace=True)
colZzzsSt = institutions.pop("zzzsSt")
institutions.insert(0, colZzzsSt.name, colZzzsSt)
institutions.to_csv('csv/institutions.csv')
def download_zzzs_xlsx_files():
# 28.03.2023, Število opredeljenih v ambulantah za neopredeljene (za osebe nad 19 let brez splošnega zdravnika)
# 28.03.2023, Število opredeljenih v ambulantah za boljšo dostopnost (splošni zdravnik)
# 28.03.2023, Število opredeljenih pri ginekologih
# 28.03.2023, Število opredeljenih pri zobozdravnikih
# 28.03.2023, Število opredeljenih pri splošnih zdravnikih (družinski, otroški oz. šolski zdravniki)
nameRegex= r".* (zobozdravniki|zdravniki|ginekologi|za boljšo dostopnost|za neopredeljene).*"
BaseURL = "https://zavarovanec.zzzs.si/izbira-in-zamenjava-osebnega-zdravnika/seznami-zdravnikov/"
page = requests.get(BaseURL)
page.raise_for_status()
soup = BeautifulSoup(page.content, "html.parser")
tableElement = soup.find("table", id="seznamdatotek-1560")
tableBodyElement = tableElement.find('tbody')
for tableBodyRowElement in tableBodyElement.find_all('tr'):
dateCellElement = tableBodyRowElement.find('td')
dateText=dateCellElement.text.strip()
atag=tableBodyRowElement.find('a')
title=atag.text
print(title)
match = re.match(nameRegex, title)
if match == None:
print(f"Unexpected title '{title}' not matching regex '{nameRegex}'', skipping.")
# raise
continue
date = datetime.datetime.strptime(dateText, '%d.%m.%Y').date()
group = match.group(1).lower().replace(' ', '-')
filename = f"{date}_{group}.xlsx"
destDir = os.path.join("zzzs/", f"{date.year:04}", f"{date.month:02}")
os.makedirs(destDir, mode = 0o755, exist_ok = True)
dest = os.path.join(destDir, filename)
if os.path.exists(dest):
print(f" Already downloaded: {dest}")
else:
h=atag['href'].strip()
url=urllib.parse.urljoin(BaseURL,h)
r = requests.get(url, allow_redirects=True)
r.raise_for_status()
ct = r.headers.get('content-type')
if ct.lower() != "application/vnd.openxmlformats-officedocument.spreadsheetml.sheet":
print(f"Unexpected content type '{ct}'.")
raise
print(f" Saving to: {dest}")
open(dest, 'wb').write(r.content)
def download_zzzs_address_book():
srcUrl = "http://api.zzzs.si/lokacijeOC/LokacijeZdrDelavcevOC.xlsx"
print(f'Downloading ZZZS address book from: {srcUrl}')
r = requests.get(srcUrl, allow_redirects=True)
r.raise_for_status()
ct = r.headers.get('content-type')
if ct.lower() != "application/xlsx" and ct.lower() != "application/vnd.openxmlformats-officedocument.spreadsheetml.sheet":
print(f"Unexpected content type '{ct}'.")
raise
# Excel: "Datum in čas priprave: 13.05.2023 16:33:37"
# HTTP header: 'Last-Modified': 'Sat, 13 May 2023 14:33:51 GMT'
ts=email.utils.parsedate_to_datetime(r.headers.get('Last-Modified'))
print(" HTTP Last Modified: ", ts)
destDirXlsx = f"zzzs/{ts.year:04}/{ts.month:02}"
os.makedirs(destDirXlsx, mode = 0o755, exist_ok = True)
destXlsx = f"{destDirXlsx}/{ts.year:04}-{ts.month:02}-{ts.day:02}_LokacijeZdrDelavcevOC.xlsx"
print(f" Saving to: {destXlsx}")
open(destXlsx, 'wb').write(r.content)
destCsv = "csv/address-book.csv"
addressBook = pd.read_excel(io=destXlsx, sheet_name='Podatki', skiprows=5, index_col=None)
addressBook.rename(inplace=True, columns={
'Šifra ZZZS dejavnosti':'zzzsTypeId',
# 'Šifra in naziv dejavnosti s storitvijo':'',
# 'Šifra in naziv storitve':'',
'RIZDDZ številka \npogodbenega \nizvajalca':'rizddzInstitutionContractorId',
'Znanstveni naziv\nosebnega zdravnika':'doctorTitleScientific',
'RIZDDZ številka izbranega \nosebnega zdravnika':'rizddzDoctorId',
'Strokovni naziv\nosebnega zdravnika':'doctorTitleProfessional',
'RIZDDZ številka \nizvajalca':'rizddzInstitutionId',
'RIZDDZ številka \nlokacije\nizvajalca':'rizddzLocationId',
'Ulica in hišna \nštevilka lokacije':'address',
'Naselje lokacije':'city',
'Poštna številka in \nnaziv pošte lokacije':'post',
'Telefonska številka':'phone',
})
addressBook['zzzsType'] = addressBook['zzzsTypeId'].map(typeid_map)
addressBook.drop(columns=['Šifra in naziv dejavnosti s storitvijo', 'Šifra in naziv storitve'], inplace=True)
addressBook.sort_values(by=['rizddzInstitutionContractorId', 'rizddzInstitutionId', 'rizddzLocationId', 'rizddzDoctorId', 'zzzsTypeId', 'zzzsType'], inplace=True)
addressBook.set_index(['rizddzInstitutionContractorId', 'rizddzInstitutionId', 'rizddzLocationId', 'rizddzDoctorId', 'zzzsTypeId', 'zzzsType'], inplace=True, verify_integrity=False) # sort columns
print(f" Saving to: {destCsv}")
addressBook.to_csv(destCsv, index = True)
def download_zzzs_RIZDDZ():
baseUrl = "https://api.zzzs.si/"
page = requests.get(baseUrl + "ZZZS/pao/bpi.nsf/index", allow_redirects=True)
page.raise_for_status()
soup = BeautifulSoup(page.content, "html.parser")
atag = soup.find_all("a", string=re.compile("bpi\.zip"))
if len(atag) != 1:
print("Problem finding unique link to bpi.zip")
raise
url = baseUrl + atag[0]['href'].strip()
print(f'Downloading RIZDDZ zip from: {url}')
r = requests.get(url, allow_redirects=True)
r.raise_for_status()
ct = r.headers.get('content-type')
if ct.lower() != "application/x-zip":
print(f"Unexpected content type '{ct}'.")
raise
cl = int(r.headers.get('content-length'))
if cl < 300000:
print(f"Too short content length {cl} bytes.")
raise
downloadedZip = ZipFile(BytesIO(r.content))
if downloadedZip.namelist() != ['BPI.XML']:
print(f"Unexpected files in zip: {downloadedZip.namelist()}.")
raise
file = downloadedZip.open('BPI.XML')
soup = BeautifulSoup(file, 'html.parser')
open("zzzs/rizddz.xml", 'wb').write(soup.prettify().encode())
if __name__ == "__main__":
fname_inst = 'csv/institutions.csv'
old_hash_inst = sha1sum(fname_inst)
fname_doctors = 'csv/doctors.csv'
old_hash_doctors = sha1sum(fname_doctors)
download_zzzs_xlsx_files()
download_zzzs_RIZDDZ()
download_zzzs_address_book()
get_zzzs_api_data_all()
get_zzzs_api_data_by_category()
zzzsid_map = get_zzzs_id_map()
convert_to_csv(zzzsid_map)
append_overrides()
geocode_addresses()
add_gurs_geodata()
add_zzzs_api_data()
write_timestamp_file(fname_inst, old_hash_inst)
write_timestamp_file(fname_doctors, old_hash_doctors)