-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathapp.py
124 lines (101 loc) · 5.39 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import streamlit as st
import torchaudio
import io
import matplotlib.pyplot as plt
# Assuming audio_recorder_streamlit is a custom or third-party module for recording audio in Streamlit apps
from audio_recorder_streamlit import audio_recorder
from trainer import SpeechLLMLightning
import re
import json
import sys
def load_model(ckpt_path):
model = SpeechLLMLightning.load_from_checkpoint(ckpt_path)
tokenizer = model.llm_tokenizer
model.eval()
model.freeze()
model.to('cuda')
return model, tokenizer
def get_or_load_model(ckpt_path):
if 'model' not in st.session_state or 'tokenizer' not in st.session_state:
model = SpeechLLMLightning.load_from_checkpoint(ckpt_path)
tokenizer = model.llm_tokenizer
model.eval()
model.freeze()
model.to('cuda')
st.session_state.model = model
st.session_state.tokenizer = tokenizer
return st.session_state.model, st.session_state.tokenizer
def extract_dictionary(input_string):
# Extract the JSON-like string
json_str_match = re.search(r'\{.*\}', input_string)
if not json_str_match:
print(input_string)
return "No valid JSON found."
json_str = json_str_match.group(0)
# Attempt to fix common JSON formatting issues:
# 1. Ensure property names are enclosed in double quotes.
# 2. Remove trailing commas before closing braces or brackets.
json_str = re.sub(r'(?<=\{|\,)\s*([^\"{}\[\]\s]+)\s*:', r'"\1":', json_str) # Fix unquoted keys
json_str = re.sub(r',\s*([\}\]])', r'\1', json_str) # Remove trailing commas
try:
# Parse the corrected JSON string into a dictionary
data_dict = json.loads(json_str)
return data_dict
except json.JSONDecodeError as e:
# Return an error message if JSON parsing fails
return f"Error parsing JSON: {str(e)}"
# Function to generate a response from the model
def generate_response(wav, model, tokenizer):
pre_speech_prompt = '''Instruction:
Give me the following information about the audio [SpeechActivity, Transcript, Gender, Age, Emotion, Accent]
Input:
<speech>'''
post_speech_prompt = '''</speech>
Output:'''
output_prompt = '\n<s>'
pre_tokenized_ids = tokenizer(pre_speech_prompt, padding="do_not_pad", return_tensors='pt', truncation=False, add_special_tokens=False)["input_ids"]
post_tokenized_ids = tokenizer(post_speech_prompt, padding="do_not_pad", return_tensors='pt', truncation=False, add_special_tokens=False)["input_ids"]
output_tokenized_ids = tokenizer(output_prompt, padding="do_not_pad", return_tensors='pt', truncation=False, add_special_tokens=False)["input_ids"]
combined_embeds, atts, label_ids = model.encode(wav.cuda(), pre_tokenized_ids.cuda(), post_tokenized_ids.cuda(), output_tokenized_ids.cuda())
out = model.llm_model.generate(
inputs_embeds=combined_embeds,
max_new_tokens=2000,
).cpu().tolist()[0]
output_text = tokenizer.decode(out, skip_special_tokens=True)
return output_text
if __name__ == "__main__":
model, tokenizer = get_or_load_model("path-to-best_checkpoint.ckpt")
# Streamlit UI components
st.title("SpeechLLM : Multi-Modal LLM for Speech Understanding")
st.markdown("""
[![hf_model](https://img.shields.io/badge/🤗-SpeechLLM%20HuggingFace-blue.svg)](https://huggingface.co/collections/skit-ai/speechllm-66605bfb37a54d4e4a60efe2)
[![Code License](https://img.shields.io/badge/Code%20License-Apache_2.0-green.svg)](https://github.com/skit-ai/SpeechLLM/blob/main/LICENSE)
[![github](https://img.shields.io/badge/-Github-black?logo=github)](https://github.com/skit-ai/SpeechLLM.git)
[![GitHub stars](https://img.shields.io/github/stars/skit-ai/SpeechLLM?style=social)](https://github.com/skit-ai/SpeechLLM/stargazers)
[![Open in Colab](https://img.shields.io/badge/Open%20in%20Colab-F9AB00?logo=googlecolab&color=blue)](https://colab.research.google.com/drive/1uqhRl36LJKA4IxnrhplLMv0wQ_f3OuBM?usp=sharing)
""", unsafe_allow_html=True)
st.write("Click below to record an audio file to get its transcription and other metadata.")
# Improved layout for audio recording button
col1, col2, col3 = st.columns([1, 2, 1])
with col2:
st.write("###")
st.write("###")
audio_data = audio_recorder(sample_rate=16000, text="")
# st.write("Click to record")
# Transcription process
if audio_data is not None:
with st.spinner('Transcribing...'):
try:
# Load audio data into a tensor
audio_buffer = io.BytesIO(audio_data)
st.audio(audio_data, format='audio/wav', start_time=0)
wav_tensor, sample_rate = torchaudio.load(audio_buffer)
wav_tensor = wav_tensor.to('cuda').mean(0).unsqueeze(0) # mean of dual channel, remove if audio is mono
# Process audio to get transcription
transcription = generate_response(wav_tensor.cuda(), model, tokenizer)
# Display the transcription
st.success('Transcription Complete')
st.text_area("LLM Output:", value=extract_dictionary(transcription), height=200, max_chars=None)
# st.code(extract_dictionary(transcription), language='python')
except Exception as e:
st.error(f"An error occurred during transcription: {e}")