forked from leimao/Singing-Voice-Separation-RNN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpreprocess.py
303 lines (171 loc) · 7.54 KB
/
preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
import numpy as np
import librosa
def load_wavs(filenames, sr):
wavs_mono = list()
wavs_src1 = list()
wavs_src2 = list()
for filename in filenames:
wav, _ = librosa.load(filename, sr = sr, mono = False)
assert (wav.ndim == 2) and (wav.shape[0] == 2), 'Require wav to have two channels'
wav_mono = librosa.to_mono(wav) * 2 # Cancelling average
wav_src1 = wav[0, :]
wav_src2 = wav[1, :]
wavs_mono.append(wav_mono)
wavs_src1.append(wav_src1)
wavs_src2.append(wav_src2)
return wavs_mono, wavs_src1, wavs_src2
def load_mono_wavs(filenames, sr):
wavs_mono = list()
for filename in filenames:
wav_mono, _ = librosa.load(filename, sr = sr, mono = True)
wavs_mono.append(wav_mono)
return wavs_mono
def wavs_to_specs(wavs_mono, wavs_src1, wavs_src2, n_fft = 1024, hop_length = None):
stfts_mono = list()
stfts_src1 = list()
stfts_src2 = list()
for wav_mono, wav_src1, wav_src2 in zip(wavs_mono, wavs_src1, wavs_src2):
stft_mono = librosa.stft(wav_mono, n_fft = n_fft, hop_length = hop_length)
stft_src1 = librosa.stft(wav_src1, n_fft = n_fft, hop_length = hop_length)
stft_src2 = librosa.stft(wav_src2, n_fft = n_fft, hop_length = hop_length)
stfts_mono.append(stft_mono)
stfts_src1.append(stft_src1)
stfts_src2.append(stft_src2)
return stfts_mono, stfts_src1, stfts_src2
def prepare_data_full(stfts_mono, stfts_src1, stfts_src2):
stfts_mono_full = list()
stfts_src1_full = list()
stfts_src2_full = list()
for stft_mono, stft_src1, stft_src2 in zip(stfts_mono, stfts_src1, stfts_src2):
stfts_mono_full.append(stft_mono.transpose())
stfts_src1_full.append(stft_src1.transpose())
stfts_src2_full.append(stft_src2.transpose())
return stfts_mono_full, stfts_src1_full, stfts_src2_full
def sample_data_batch(stfts_mono, stfts_src1, stfts_src2, batch_size = 64, sample_frames = 8):
stft_mono_batch = list()
stft_src1_batch = list()
stft_src2_batch = list()
collection_size = len(stfts_mono)
collection_idx = np.random.choice(collection_size, batch_size, replace = True)
for idx in collection_idx:
stft_mono = stfts_mono[idx]
stft_src1 = stfts_src1[idx]
stft_src2 = stfts_src2[idx]
num_frames = stft_mono.shape[1]
assert num_frames >= sample_frames
start = np.random.randint(num_frames - sample_frames + 1)
end = start + sample_frames
stft_mono_batch.append(stft_mono[:,start:end])
stft_src1_batch.append(stft_src1[:,start:end])
stft_src2_batch.append(stft_src2[:,start:end])
# Shape: [batch_size, n_frequencies, n_frames]
stft_mono_batch = np.array(stft_mono_batch)
stft_src1_batch = np.array(stft_src1_batch)
stft_src2_batch = np.array(stft_src2_batch)
# Shape for RNN: [batch_size, n_frames, n_frequencies]
data_mono_batch = stft_mono_batch.transpose((0, 2, 1))
data_src1_batch = stft_src1_batch.transpose((0, 2, 1))
data_src2_batch = stft_src2_batch.transpose((0, 2, 1))
return data_mono_batch, data_src1_batch, data_src2_batch
def sperate_magnitude_phase(data):
return np.abs(data), np.angle(data)
def combine_magnitdue_phase(magnitudes, phases):
return magnitudes * np.exp(1.j * phases)
def specs_to_wavs_istft_batch(magnitudes, phases, hop_length):
stft_matrices = combine_magnitdue_phase(magnitudes = magnitudes, phases = phases)
wavs = list()
for magnitude, phase in zip(magnitudes, phases):
wav = librosa.istft(stft_matrices, hop_length = hop_length)
wavs.append(wav)
wavs = np.array(wavs)
return wavs
def specs_to_wavs_griffin_lim_batch():
# Recover an audio signal given only the magnitude of its Short-Time Fourier Transform (STFT)
return
def get_random_wav(filename, sr, duration):
# Get a random range from wav
wav, _ = librosa.load(filename, sr = sr, mono = False)
print(wav)
assert (wav.ndim == 2) and (wav.shape[0] == 2), 'Require wav to have two channels'
wav_pad = pad_wav(wav = wav, sr = sr, duration = duration)
wav_sample = sample_range(wav = wav, sr = sr, duration = duration)
wav_sample_mono = librosa.to_mono(wav_sample)
wav_sample_src1 = wav_sample[0, :]
wav_sample_src2 = wav_sample[1, :]
return wav_sample_mono, wav_sample_src1, wav_sample_src2
def get_random_wav_batch(filenames, sr, duration):
# Get a random wav dataset of certain length
wav_mono = list()
wav_src1 = list()
wav_src2 = list()
for filename in filenames:
wav_sample_mono, wav_sample_src1, wav_sample_src2 = get_random_wav(filename = filename, sr = sr, duration = duration)
wav_mono.append(wav_sample_mono)
wav_src1.append(wav_sample_src1)
wav_src2.append(wav_sample_src2)
wav_mono = np.array(wav_mono)
wav_src1 = np.array(wav_src1)
wav_src2 = np.array(wav_src2)
return wav_mono, wav_src1, wav_src2
def wav_to_spec_batch(wavs, n_fft, hop_length = None):
# Short-time Fourier transform (STFT) for wav matrix in batch
# n_fft : int > 0 [scalar] FFT window size.
# hop_length : int > 0 [scalar] number audio of frames between STFT columns. If unspecified, defaults win_length / 4.
assert (wavs.ndim == 2), 'Single wav uses librosa.stft() directly'
stft_matrices = list()
for wav in wavs:
stft_matrix = librosa.stft(wav, n_fft = n_fft, hop_length = hop_length)
stft_matrices.append(stft_matrix)
stft_matrices = np.array(stft_matrices)
return stft_matrices
def spec_to_wav_batch(stft_matrices, hop_length = None):
# Every stft matrix in stft matrices may have complex numbers
assert (stft_matrices.ndim == 3), 'Single stft maxtrix uses librosa.istft() directly'
wavs = list()
for stft_matrix in stft_matrices:
wav = librosa.istft(stft_matrix, hop_length = hop_length)
wavs.append(wav)
wavs = np.array(wavs)
return wavs
def get_spec_freq(stft_matrix, sr, n_fft):
# Get the sample frequencies for stft_matrix
assert (stft_matrix.ndim == 2)
return np.arange(stft_matrix.shape[0]) / n_fft * sr
def get_magnitude(x):
# Get magnitude of complex scalar, vector or matrix
return np.abs(x)
def get_phase(x):
# Get phase of complex scalar, vector or matrix
return np.angle(x)
def make_complex(magnitude, phase):
# Make complex using magnitude and phase
return magnitude * np.exp(1.j * phase)
def pad_wav(wav, sr, duration):
# Pad short wav with zeros at the end so that wav is long enough for model training
# Only pad mono sourced or dual sourced wav
assert(wav.ndim <= 2)
# Minimum length of wav
n_samples = sr * duration
# Number of elements to pad per source
pad_len = np.maximum(0, n_samples - wav.shape[-1])
if wav.ndim == 1:
pad_width = (0, pad_len)
else:
pad_width = ((0, 0), (0, pad_len))
wav = np.pad(wav, pad_width = pad_width, mode = 'constant', constant_values = 0)
return wav
def sample_range(wav, sr, duration):
# Down sample wav to certain length
assert(wav.ndim <= 2)
# Target length must be shorter than wav length
wav_len = wav.shape[-1]
target_len = sr * duration
assert(target_len <= wav_len), 'wav too short to sample'
# Randomly choose sampling range
start = np.random.randint(wav_len - target_len + 1)
end = start + target_len
if wav.ndim == 1:
wav_sample = wav[start:end]
else:
wav_sample = wav[:, start:end]
return wav_sample