-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathfeature_generation.py
384 lines (319 loc) · 17.8 KB
/
feature_generation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
"""Methods for generating each feature can be added to the FeatureGenerator class."""
from __future__ import division
import logging
import os, re, string, tqdm, nltk
import numpy as np
from os.path import basename
from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer
from gensim import models
from gensim.models.phrases import Phraser
from sklearn.metrics.pairwise import cosine_similarity
from sklearn.preprocessing import normalize
from FeatureData import FeatureData, tokenize_text
from nltk import word_tokenize, pos_tag, ne_chunk, sent_tokenize
from nltk.sentiment.vader import SentimentIntensityAnalyzer
from nltk.chunk import tree2conlltags
from nltk.stem import PorterStemmer
from textacy.doc import Doc
from textacy.extract import direct_quotations
import spacy
class FeatureGenerator(object):
"""Class responsible for generating each feature used in the X matrix."""
def __init__(self, clean_articles, clean_stances, original_articles, load_data=True):
self._articles = clean_articles # dictionary {article ID: body}
self._original_articles = original_articles
self._stances = clean_stances # list of dictionaries
self._max_ngram_size = 3
self._refuting_words = ['fake', 'fraud', 'hoax', 'false', 'deny', 'denies', 'not', 'despite', 'nope', 'doubt',
'doubts', 'bogus', 'debunk', 'pranks', 'retract']
@staticmethod
def get_features_from_file(features_directory, use=[]):
"""Returns the full set of features as a 2d numpy array by concatenating all of the feature csv files located
under the features directory."""
features = []
feature_names = []
for feature_csv in os.listdir(features_directory):
for feature in use:
if np.count_nonzero([feature_csv.startswith(feature)]):
with open(os.path.join(features_directory, feature_csv)) as f:
content = np.loadtxt(fname=f, comments='', delimiter=',', skiprows=1)
del_indices = []
i=0
if len(content.shape) == 1:
content = content.reshape(content.shape[0], 1)
feature_names.append(basename(feature) + str(0))
else:
for i in range(len(content)):
if i in use[feature]:
feature_names.append(basename(feature) + str(i))
else:
del_indices.append(i)
content = np.delete(content, del_indices, 1)
features.append(content)
test = np.concatenate(features, axis=1)
return test, feature_names
def get_features(self, features_directory="features"):
"""Retrieves the full set of features as a matrix (the X matrix for training). You only need to run this
if the features have been updated since the last time they were output to a file under the features
directory."""
feature_names = []
features = []
if True:
print 'Retrieving headline ngrams...'
ngrams = np.array(self._get_ngrams())
features.append(ngrams)
ngram_headings = [('ngram_' + str(count)) for count in range(1, self._max_ngram_size + 1)]
feature_names.append(ngram_headings)
self._feature_to_csv(ngrams, ngram_headings, features_directory+'/ngrams.csv')
if True:
print 'Retrieving word2Vec...'
word2Vec = np.array(self._get_word2vec()).reshape(len(self._stances), 1)
features.append(word2Vec)
feature_names.append("word2Vec")
self._feature_to_csv(word2Vec, ["word2Vec"], features_directory + '/word2Vec.csv')
if True:
print 'Retrieving refuting words...'
refuting = np.array(self._get_refuting_words())
features.append(refuting)
[feature_names.append(word + '_refuting') for word in self._refuting_words]
self._feature_to_csv(refuting, self._refuting_words, features_directory+'/refuting.csv')
if True:
print 'Retrieving polarity...'
polarity = np.array(self._polarity_feature())
features.append(polarity)
feature_names.append('headline_polarity')
feature_names.append('article_polarity')
self._feature_to_csv(polarity, ['headline_polarity', 'article_polarity'], features_directory+'/polarity.csv')
if True:
print 'Retrieving named entity cosine...'
named_cosine = np.array(self._named_entity_feature()).reshape(len(self._stances), 1)
features.append(named_cosine)
feature_names.append('named_cosine')
self._feature_to_csv(named_cosine, ['named_cosine'], features_directory+'/named_cosine.csv')
if True:
print 'Retrieving VADER...'
vader = np.array(self._vader_feature()).reshape(len(self._stances), 2)
features.append(vader)
feature_names.append('vader_pos')
feature_names.append('vader_neg')
self._feature_to_csv(vader, ['vader'], features_directory+'/vader.csv')
if True:
print 'Retrieving jaccard similarities...'
jaccard = np.array(self._get_jaccard_similarity()).reshape(len(self._stances), 1)
features.append(jaccard)
feature_names.append('jaccard_similarity')
self._feature_to_csv(jaccard, ['jaccard_similarity'], features_directory+'/jaccard_similarity.csv')
if True:
print 'Retrieving quote analysis...'
quotes = np.array(self._get_quotes()).reshape(len(self._stances), 1)
features.append(quotes)
feature_names.append('quote_analysis')
self._feature_to_csv(quotes, ['quote_analysis'], features_directory+'/quote_analysis.csv')
if True:
lengths = np.array(self._length_feature()).reshape(len(self._stances), 1)
features.append(lengths)
feature_names.append('lengths')
self._feature_to_csv(lengths, ['lengths'], features_directory + '/lengths.csv')
if True:
logging.debug('Retrieving punctuation frequencies...')
punctuation_frequencies = np.array(self._get_punctuation_frequency()).reshape(len(self._stances), 1)
features.append(punctuation_frequencies)
feature_names.append('punctuation_frequency')
self._feature_to_csv(punctuation_frequencies, ['punctuation_frequency'],
features_directory + '/punctuation_frequency')
return {'feature_matrix': np.concatenate(features, axis=1), 'feature_names': feature_names}
def _feature_to_csv(self, feature, feature_headers, output_path):
"""Outputs a feature to a csv file. feature is a 2d numpy matrix containing the feature values and
feature headers is a list containing the feature's column headings."""
header = ','.join(feature_headers)
np.savetxt(fname=output_path, X=feature, delimiter=',', header=header, comments='')
@staticmethod
def combine_train_and_test_features():
""" Concatenates training and competition features into single files under the 'combined_features'
directory. """
for feature in os.listdir('features'):
with open(os.path.join('features', feature), 'r+') as f_train, open(os.path.join('test_features', feature), 'r+') as f_test:
f_train.flush()
f_test.flush()
os.fsync(f_train.fileno())
os.fsync(f_test.fileno())
with open(os.path.join('combined_features', feature), 'wb') as f_combined:
for line in f_train:
f_combined.write(line)
next(f_test)
for line in f_test:
f_combined.write(line)
def _get_ngrams(self):
"""Retrieves counts for ngrams of the article title in the article itself, from one up to size max_ngram_size.
Returns a list of lists, each containing the counts for a different size of ngram."""
ngrams = []
for stance in tqdm.tqdm(self._stances):
# Retrieves the vocabulary of ngrams for the headline.
stance_vectorizer = CountVectorizer(input=stance['Headline'], ngram_range=(1, self._max_ngram_size),
binary=True)
stance_vectorizer.fit_transform([stance['Headline']]).toarray()
# Search the article text and count headline ngrams.
vocab = stance_vectorizer.get_feature_names()
vectorizer = CountVectorizer(input=self._articles[stance['Body ID']], vocabulary=vocab,
ngram_range=(1, self._max_ngram_size))
ngram_counts = vectorizer.fit_transform([self._articles[stance['Body ID']]]).toarray()
features = vectorizer.get_feature_names()
aggregated_counts = [0 for _ in range(self._max_ngram_size)]
# Create a list of the aggregated counts of each ngram size.
for index in np.nditer(np.nonzero(ngram_counts[0]), ['zerosize_ok']):
aggregated_counts[len(features[index].split()) - 1] += ngram_counts[0][index]
# attempt to standardize ngram counts across headlines and bodies of varying length by dividing total
# ngram hits by the length of the headline. These will need to be normalized later so they lie
# between 0 and 1.
standardized_counts = [1.0*count/len(stance['Headline'].split()) for count in aggregated_counts]
ngrams.append(standardized_counts)
#print ngrams
return ngrams
def _get_word2vec(self):
# Gather sentences
tokenizer = nltk.data.load('tokenizers/punkt/english.pickle')
all_words = []; atricle_words = []
for stance in tqdm.tqdm(self._stances):
if stance['Stance'] == 'unrelated':
pass
body_words = []; headline_words = []
headline = tokenizer.tokenize(stance['originalHeadline'])
body = tokenizer.tokenize(self._original_articles[stance['Body ID']])[:4]
for s in headline:
s = word_tokenize(s)
headline_words = headline_words + s
all_words.append(s)
for s in body:
s = word_tokenize(s)
body_words = body_words + s
all_words.append(s)
atricle_words.append([headline_words, body_words])
# Train Word2Vec
model = models.Word2Vec(all_words, size=100, min_count=1)
cosine_similarities = []
# Generate sentence vectors and computer cosine similarity
for headline, body in atricle_words:
h_vector = sum([model.wv[word] for word in headline])
b_vector = sum([model.wv[word] for word in body])
cosine_similarities.append(cosine_similarity(h_vector.reshape(1,-1), b_vector.reshape(1,-1)))
return cosine_similarities
def _get_refuting_words(self):
""" Retrieves headlines of the articles and indicates a count of each of the refuting words in the headline.
Returns a list containing the number of refuting words found (at lease once) in the headline. """
features = []
for stance in tqdm.tqdm(self._stances):
# print "[DEBUG] stance ", stance
count = [1 if refute_word in stance['Headline'] else 0 for refute_word in self._refuting_words]
# print "[DEBUG] count ", count
features.append(count)
# print "[DEBUG] features", features
return features
def _polarity_feature(self):
_refuting_words = ['fake', 'fraud', 'hoax', 'false', 'deny', 'denies', 'not',
'despite', 'nope', 'nowhere', 'doubt', 'doubts', 'bogus', 'debunk', 'pranks',
'retract', 'nothing', 'never', 'none', 'budge']
def determine_polarity(text):
tokens = tokenize_text(text)
return sum([token in _refuting_words for token in tokens]) % 2
polarities = []
for stance in tqdm.tqdm(self._stances):
headline_polarity = determine_polarity(stance['Headline'])
body_polarity = determine_polarity(self._articles.get(stance['Body ID']))
polarities.append([headline_polarity, body_polarity])
return polarities
def _named_entity_feature(self):
""" Retrieves a list of Named Entities from the Headline and Body.
Returns a list containing the cosine similarity between the counts of the named entities """
stemmer = PorterStemmer()
def get_tags(text):
return pos_tag(word_tokenize(text.encode('ascii', 'ignore')))
def filter_pos(named_tags, tag):
return " ".join([stemmer.stem(name[0]) for name in named_tags if name[1].startswith(tag)])
named_cosine = []
tags = ["NN"]
for stance in tqdm.tqdm(self._stances):
stance_cosine = []
head = get_tags(stance['originalHeadline'])
body = get_tags(self._original_articles.get(stance['Body ID'])[:255])
for tag in tags:
head_f = filter_pos(head, tag)
body_f = filter_pos(body, tag)
if head_f and body_f:
vect = TfidfVectorizer(min_df=1)
tfidf = vect.fit_transform([head_f,body_f])
cosine = (tfidf * tfidf.T).todense().tolist()
if len(cosine) == 2:
stance_cosine.append(cosine[1][0])
else:
stance_cosine.append(0)
else:
stance_cosine.append(0)
named_cosine.append(stance_cosine)
return named_cosine
def _vader_feature(self):
sid = SentimentIntensityAnalyzer()
features = []
for stance in tqdm.tqdm(self._stances):
headVader = sid.polarity_scores(stance["Headline"])
bodyVader = sid.polarity_scores(sent_tokenize(self._original_articles.get(stance['Body ID']))[0])
features.append(abs(headVader['pos']-bodyVader['pos']))
features.append(abs(headVader['neg']-bodyVader['neg']))
return features
def _get_jaccard_similarity(self):
""" Get the jaccard similarities for each headline and article body pair. Jaccard similarity is defined as
J(A, B) = |A intersect B| / |A union B|. Try to normalize by only considering the first"""
similarities = []
for stance in tqdm.tqdm(self._stances):
headline = set(stance['Headline'].split())
body = set(self._articles.get(stance['Body ID']).split()[:255])
jaccard = float(len(headline.intersection(body))) / len(headline.union(body))
similarities.append(jaccard)
return similarities
def _get_quotes(self):
quote_count = []
for stance in tqdm.tqdm(self._stances):
body = self._original_articles.get(stance['Body ID']).decode('utf-8', 'replace')
doc = Doc(content=body, lang=u'en')
quotes = direct_quotations(doc)
quote_counter = 0
for q in quotes:
quote_counter = quote_counter + len(q[2])
quote_counter = quote_counter / len(body)
quote_count.append(quote_counter)
return quote_count
def _length_feature(self):
lengths = []
for stance in tqdm.tqdm(self._stances):
lengths.append(len(self._original_articles.get(stance['Body ID'])))
return lengths
def _get_punctuation_frequency(self):
frequencies = []
for stance in tqdm.tqdm(self._stances):
question_marks = 0
exclamation_marks = 0
article_body = self._original_articles[stance['Body ID']]
for character in article_body:
if character == '?':
question_marks += 1
elif character == '!':
exclamation_marks += 1
frequency = (question_marks + exclamation_marks) / len(article_body.split())
frequencies.append(frequency)
return frequencies
# WIP
# def _bias_feature(self):
#
# for stance in tqdm.tqdm(self._stances):
# # Search the article text and count biased words
# vectorizer = CountVectorizer(input=self._articles[stance['Body ID']], ngram_range=(1, 1), binary=False)
# vocab = vectorizer.get_feature_names()
if __name__ == '__main__':
logging.basicConfig(level=logging.WARNING)
feature_data = FeatureData('data/competition_test_bodies.csv', 'data/competition_test_stances.csv')
feature_generator = FeatureGenerator(feature_data.get_clean_articles(), feature_data.get_clean_stances(), feature_data.get_original_articles())
features = feature_generator.get_features("test_features")
feature_data = FeatureData('data/train_bodies.csv', 'data/train_stances.csv')
feature_generator = FeatureGenerator(feature_data.get_clean_articles(), feature_data.get_clean_stances(), feature_data.get_original_articles())
features = feature_generator.get_features()
# Concatenate competition and training features to get combined files
FeatureGenerator.combine_train_and_test_features()