-
Notifications
You must be signed in to change notification settings - Fork 155
/
Copy pathresampling.py
117 lines (92 loc) · 3.91 KB
/
resampling.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
from random import random, randrange, shuffle, expovariate, gauss
from statistics import mean, median, stdev
from math import factorial as fact
from heapq import heappush, heappop
#############################################################################
# Helper functions for analysis
def combinations(n, r):
return fact(n) // (fact(r) * fact(n-r))
def cum_binom(n, r, ph):
total = 0.0
for h in range(r, n+1):
total += ph ** h * (1.0 - ph) ** (n - h) * combinations(n, h)
return total
#############################################################################
# Estimate the probability of getting 5 or more heads
# from 7 spins of biased coin (60% heads and 40% tails)
print(cum_binom(7, 5, 0.60))
def trial():
nh = 0
for i in range(7):
nh += random() < 0.60
return nh >= 5
cases = 0
for i in range(10000):
cases += trial()
print(cases / 10000.0)
trial = lambda : sum(random() < 0.60 for i in range(7)) >= 5
print(sum(trial() for i in range(10000)) / 10000.0)
#############################################################################
# Probability of the median of 5 samples being in the
# middle two quartiles of the population
trial = lambda : 2500 <= sorted(randrange(10000) for i in range(5))[2] < 7500
print(sum(trial() for i in range(10000)) / 10000.0) # compare with the beta distribution
#############################################################################
# Hypothesis testing with an exact permutation text
drug = [54, 73, 53, 70, 73, 68, 52, 65, 65]
placebo = [54, 51, 58, 44, 55, 52, 42, 47, 58, 46]
obs_diff = mean(drug) - mean(placebo)
# Null hypothesis is that there is no real difference between the drug
# and the placebo. Which means that any observed difference was just
# due to chance and noise.
comb = drug + placebo
cases = 0
for i in range(10000):
shuffle(comb)
new_diff = mean(comb[:len(drug)]) - mean(comb[len(drug):])
cases += new_diff >= obs_diff
print(cases / 10000, '<-- The p-value')
print('Accordlingly, we reject the null hypothesis')
print('and conclude the observed difference was not due to chance')
#############################################################################
# Simulation of arrival times and service deliveries in a single server queue
average_arrival_interval = 5.6
average_service_time = 5.0
stdev_service_time = 0.5
num_waiting = 0
arrivals = []
starts = []
arrival = service_end = 0.0
for i in range(20000):
if arrival <= service_end:
num_waiting += 1
arrival += expovariate(1.0 / average_arrival_interval)
arrivals.append(arrival)
else:
num_waiting -= 1
service_start = service_end if num_waiting else arrival
service_time = gauss(average_service_time, stdev_service_time)
service_end = service_start + service_time
starts.append(service_start)
waits = [start - arrival for arrival, start in zip(arrivals, starts)]
print(f'Mean wait: {mean(waits):.1f}. Stdev wait: {stdev(waits):.1f}.')
print(f'Median wait: {median(waits):.1f}. Max wait: {max(waits):.1f}.')
############################################################################
# Simulation of arrival times and service deliveries for a multiserver queue
average_arrival_interval = 5.6
average_service_time = 15.0
stdev_service_time = 3.5
num_servers = 3
waits = []
arrival_time = 0.0
servers = [0.0] * num_servers # time when each server becomes available
for i in range(100_000):
arrival_time += expovariate(1.0 / average_arrival_interval)
next_server_available = heappop(servers)
wait = max(0.0, next_server_available - arrival_time)
waits.append(wait)
service_duration = gauss(average_service_time, stdev_service_time)
service_completed = arrival_time + wait + service_duration
heappush(servers, service_completed)
print(f'Mean wait: {mean(waits):.1f}. Stdev wait: {stdev(waits):.1f}.')
print(f'Median wait: {median(waits):.1f}. Max wait: {max(waits):.1f}.')