-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathssd1309.py
920 lines (845 loc) · 32 KB
/
ssd1309.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
"""MicroPython SSD1309 OLED monochrom display driver."""
from math import cos, sin, pi, radians
from micropython import const # type: ignore
from framebuf import FrameBuffer, GS8, MONO_HMSB, MONO_VLSB # type: ignore
from utime import sleep_ms # type: ignore
class Display(object):
"""Serial and I2C interface for SD1309 monochrome OLED display.
Note: All coordinates are zero based.
"""
# Command constants from display datasheet
CONTRAST_CONTROL = const(0x81)
ENTIRE_DISPLAY_ON = const(0xA4)
ALL_PIXELS_ON = const(0XA5)
INVERSION_OFF = const(0xA6)
INVERSION_ON = const(0XA7)
DISPLAY_OFF = const(0xAE)
DISPLAY_ON = const(0XAF)
NOP = const(0xE3)
COMMAND_LOCK = const(0xFD)
CHARGE_PUMP = const(0x8D)
# Scrolling commands
CH_SCROLL_SETUP_RIGHT = const(0x26)
CH_SCROLL_SETUP_LEFT = const(0x27)
CV_SCROLL_SETUP_RIGHT = const(0x29)
CV_SCROLL_SETUP_LEFT = const(0x2A)
DEACTIVATE_SCROLL = const(0x2E)
ACTIVATE_SCROLL = const(0x2F)
VSCROLL_AREA = const(0xA3)
SCROLL_SETUP_LEFT = const(0x2C)
SCROLL_SETUP_RIGHT = const(0x2D)
# Addressing commands
LOW_CSA_IN_PAM = const(0x00)
HIGH_CSA_IN_PAM = const(0x10)
MEMORY_ADDRESSING_MODE = const(0x20)
COLUMN_ADDRESS = const(0x21)
PAGE_ADDRESS = const(0x22)
PSA_IN_PAM = const(0xB0)
DISPLAY_START_LINE = const(0x40)
SEGMENT_MAP_REMAP = const(0xA0)
SEGMENT_MAP_FLIP = const(0xA1)
MUX_RATIO = const(0xA8)
COM_OUTPUT_NORMAL = const(0xC0)
COM_OUTPUT_FLIP = const(0xC8)
DISPLAY_OFFSET = const(0xD3)
COM_PINS_HW_CFG = const(0xDA)
GPIO = const(0xDC)
# Timing and driving scheme commands
DISPLAY_CLOCK_DIV = const(0xd5)
PRECHARGE_PERIOD = const(0xd9)
VCOM_DESELECT_LEVEL = const(0xdb)
def __init__(self, spi=None, cs=None, dc=None, rst=None,
i2c=None, address=0x3C, width=128, height=64, flip=False):
"""Constructor for Display.
Args:
spi (Optional Class Spi): SPI interface for display
cs (Optional Class Pin): Chip select pin
dc (Optional Class Pin): Data/Command pin
rst (Optional Class Pin): Reset pin
i2c (Optional Class I2C): I2C interface for display
address (Optional int): I2C address
width (Optional int): Screen width (default 128)
height (Optional int): Screen height (default 64)
flip (bool):True=Rotate 180 degrees, False=0 degrees (default)
"""
if rst is not None:
self.rst = rst
self.rst.init(self.rst.OUT, value=1)
if spi is not None:
self.spi = spi
self.cs = cs
self.dc = dc
self.cs.init(self.cs.OUT, value=1)
self.dc.init(self.dc.OUT, value=0)
self.write_cmd = self.write_cmd_spi
self.write_data = self.write_data_spi
elif i2c is not None:
self.address = address
self.i2c = i2c
self.write_cmd = self.write_cmd_i2c
self.write_data = self.write_data_i2c
else:
raise RuntimeError('An I2C or SPI interface is required.')
self.width = width
self.height = height
self.pages = self.height // 8
self.byte_width = -(-width // 8) # Ceiling division
self.buffer_length = self.byte_width * height
# Buffer
self.mono_image = bytearray(self.buffer_length)
# Frame Buffer
self.monoFB = FrameBuffer(self.mono_image, width, height, MONO_VLSB)
self.clear_buffers()
self.reset()
# Send initialization commands
for cmd in (
self.DISPLAY_OFF,
self.DISPLAY_CLOCK_DIV, 0x80,
self.MUX_RATIO, self.height - 1,
self.DISPLAY_OFFSET, 0x00,
self.DISPLAY_START_LINE,
self.CHARGE_PUMP, 0x14,
self.MEMORY_ADDRESSING_MODE, 0x00,
self.SEGMENT_MAP_FLIP if flip else self.SEGMENT_MAP_REMAP,
self.COM_OUTPUT_FLIP if flip else self.COM_OUTPUT_NORMAL,
self.COM_PINS_HW_CFG, 0x02 if (self.height == 32 or
self.height == 16) and
(self.width != 64)
else 0x12,
self.CONTRAST_CONTROL, 0xFF,
self.PRECHARGE_PERIOD, 0xF1,
self. VCOM_DESELECT_LEVEL, 0x40,
self.ENTIRE_DISPLAY_ON, # output follows RAM contents
self.INVERSION_OFF, # not inverted
self.DISPLAY_ON): # on
self.write_cmd(cmd)
self.clear_buffers()
self.present()
def cleanup(self):
"""Clean up resources."""
self.clear()
self.sleep()
if hasattr(self, 'spi'):
self.spi.deinit()
print('display off')
def clear(self):
"""Clear display.
"""
self.clear_buffers()
self.present()
def clear_buffers(self):
"""Clear buffer.
"""
self.monoFB.fill(0x00)
def draw_bitmap(self, path, x, y, w, h, invert=False, rotate=0):
"""Load MONO_HMSB bitmap from disc and draw to screen.
Args:
path (string): Image file path.
x (int): x-coord of image.
y (int): y-coord of image.
w (int): Width of image.
h (int): Height of image.
invert (bool): True = invert image, False (Default) = normal image.
rotate(int): 0, 90, 180, 270
Notes:
w x h cannot exceed 2048
"""
array_size = w * h
with open(path, "rb") as f:
buf = bytearray(f.read(array_size))
fb = FrameBuffer(buf, w, h, MONO_HMSB)
if rotate == 0 and invert is True: # 0 degrees
fb2 = FrameBuffer(bytearray(array_size), w, h, MONO_HMSB)
for y1 in range(h):
for x1 in range(w):
fb2.pixel(x1, y1, fb.pixel(x1, y1) ^ 0x01)
fb = fb2
elif rotate == 90: # 90 degrees
fb2 = FrameBuffer(bytearray(array_size), h, w, MONO_HMSB)
for y1 in range(h):
for x1 in range(w):
if invert is True:
fb2.pixel(y1, x1,
fb.pixel(x1, (h - 1) - y1) ^ 0x01)
else:
fb2.pixel(y1, x1, fb.pixel(x1, (h - 1) - y1))
fb = fb2
elif rotate == 180: # 180 degrees
fb2 = FrameBuffer(bytearray(array_size), w, h, MONO_HMSB)
for y1 in range(h):
for x1 in range(w):
if invert is True:
fb2.pixel(x1, y1, fb.pixel((w - 1) - x1,
(h - 1) - y1) ^ 0x01)
else:
fb2.pixel(x1, y1,
fb.pixel((w - 1) - x1, (h - 1) - y1))
fb = fb2
elif rotate == 270: # 270 degrees
fb2 = FrameBuffer(bytearray(array_size), h, w, MONO_HMSB)
for y1 in range(h):
for x1 in range(w):
if invert is True:
fb2.pixel(y1, x1,
fb.pixel((w - 1) - x1, y1) ^ 0x01)
else:
fb2.pixel(y1, x1, fb.pixel((w - 1) - x1, y1))
fb = fb2
self.monoFB.blit(fb, x, y)
def draw_bitmap_raw(self, path, x, y, w, h, invert=False, rotate=0):
"""Load raw bitmap from disc and draw to screen.
Args:
path (string): Image file path.
x (int): x-coord of image.
y (int): y-coord of image.
w (int): Width of image.
h (int): Height of image.
invert (bool): True = invert image, False (Default) = normal image.
rotate(int): 0, 90, 180, 270
Notes:
w x h cannot exceed 2048
"""
if rotate == 90 or rotate == 270:
w, h = h, w # Swap width & height if landscape
buf_size = w * h
with open(path, "rb") as f:
if rotate == 0:
buf = bytearray(f.read(buf_size))
elif rotate == 90:
buf = bytearray(buf_size)
for x1 in range(w - 1, -1, -1):
for y1 in range(h):
index = (w * y1) + x1
buf[index] = f.read(1)[0]
elif rotate == 180:
buf = bytearray(buf_size)
for index in range(buf_size - 1, -1, -1):
buf[index] = f.read(1)[0]
elif rotate == 270:
buf = bytearray(buf_size)
for x1 in range(1, w + 1):
for y1 in range(h - 1, -1, -1):
index = (w * y1) + x1 - 1
buf[index] = f.read(1)[0]
if invert:
for i, _ in enumerate(buf):
buf[i] ^= 0xFF
fbuf = FrameBuffer(buf, w, h, GS8)
self.monoFB.blit(fbuf, x, y)
def draw_circle(self, x0, y0, r, invert=False):
"""Draw a circle.
Args:
x0 (int): X coordinate of center point.
y0 (int): Y coordinate of center point.
r (int): Radius.
invert (bool): True = clear line, False (Default) = draw line.
"""
f = 1 - r
dx = 1
dy = -r - r
x = 0
y = r
self.draw_pixel(x0, y0 + r, invert)
self.draw_pixel(x0, y0 - r, invert)
self.draw_pixel(x0 + r, y0, invert)
self.draw_pixel(x0 - r, y0, invert)
while x < y:
if f >= 0:
y -= 1
dy += 2
f += dy
x += 1
dx += 2
f += dx
self.draw_pixel(x0 + x, y0 + y, invert)
self.draw_pixel(x0 - x, y0 + y, invert)
self.draw_pixel(x0 + x, y0 - y, invert)
self.draw_pixel(x0 - x, y0 - y, invert)
self.draw_pixel(x0 + y, y0 + x, invert)
self.draw_pixel(x0 - y, y0 + x, invert)
self.draw_pixel(x0 + y, y0 - x, invert)
self.draw_pixel(x0 - y, y0 - x, invert)
def draw_ellipse(self, x0, y0, a, b, invert=False):
"""Draw an ellipse.
Args:
x0, y0 (int): Coordinates of center point.
a (int): Semi axis horizontal.
b (int): Semi axis vertical.
invert (bool): True = clear line, False (Default) = draw line.
Note:
The center point is the center of the x0,y0 pixel.
Since pixels are not divisible, the axes are integer rounded
up to complete on a full pixel. Therefore the major and
minor axes are increased by 1.
"""
a2 = a * a
b2 = b * b
twoa2 = a2 + a2
twob2 = b2 + b2
x = 0
y = b
px = 0
py = twoa2 * y
# Plot initial points
self.draw_pixel(x0 + x, y0 + y, invert)
self.draw_pixel(x0 - x, y0 + y, invert)
self.draw_pixel(x0 + x, y0 - y, invert)
self.draw_pixel(x0 - x, y0 - y, invert)
# Region 1
p = round(b2 - (a2 * b) + (0.25 * a2))
while px < py:
x += 1
px += twob2
if p < 0:
p += b2 + px
else:
y -= 1
py -= twoa2
p += b2 + px - py
self.draw_pixel(x0 + x, y0 + y, invert)
self.draw_pixel(x0 - x, y0 + y, invert)
self.draw_pixel(x0 + x, y0 - y, invert)
self.draw_pixel(x0 - x, y0 - y, invert)
# Region 2
p = round(b2 * (x + 0.5) * (x + 0.5) +
a2 * (y - 1) * (y - 1) - a2 * b2)
while y > 0:
y -= 1
py -= twoa2
if p > 0:
p += a2 - py
else:
x += 1
px += twob2
p += a2 - py + px
self.draw_pixel(x0 + x, y0 + y, invert)
self.draw_pixel(x0 - x, y0 + y, invert)
self.draw_pixel(x0 + x, y0 - y, invert)
self.draw_pixel(x0 - x, y0 - y, invert)
def draw_hline(self, x, y, w, invert=False):
"""Draw a horizontal line.
Args:
x (int): Starting X position.
y (int): Starting Y position.
w (int): Width of line.
invert (bool): True = clear line, False (Default) = draw line.
"""
if self.is_off_grid(x, y, x + w - 1, y):
return
self.monoFB.hline(x, y, w, int(invert ^ 1))
def draw_letter(self, x, y, letter, font, invert=False, rotate=False):
"""Draw a letter.
Args:
x (int): Starting X position.
y (int): Starting Y position.
letter (string): Letter to draw.
font (XglcdFont object): Font.
invert (bool): Invert color
rotate (int): Rotation of letter
"""
fbuf, w, h = font.get_letter(letter, invert=invert, rotate=rotate)
# Check for errors
if w == 0:
return w, h
# Offset y for 270 degrees and x for 180 degrees
if rotate == 180:
x -= w
elif rotate == 270:
y -= h
self.monoFB.blit(fbuf, x, y)
return w, h
def draw_line(self, x1, y1, x2, y2, invert=False):
"""Draw a line using Bresenham's algorithm.
Args:
x1, y1 (int): Starting coordinates of the line
x2, y2 (int): Ending coordinates of the line
invert (bool): True = clear line, False (Default) = draw line.
"""
# Check for horizontal line
if y1 == y2:
if x1 > x2:
x1, x2 = x2, x1
self.draw_hline(x1, y1, x2 - x1 + 1, invert)
return
# Check for vertical line
if x1 == x2:
if y1 > y2:
y1, y2 = y2, y1
self.draw_vline(x1, y1, y2 - y1 + 1, invert)
return
# Confirm coordinates in boundary
if self.is_off_grid(min(x1, x2), min(y1, y2),
max(x1, x2), max(y1, y2)):
return
self.monoFB.line(x1, y1, x2, y2, invert ^ 1)
def draw_lines(self, coords, invert=False):
"""Draw multiple lines.
Args:
coords ([[int, int],...]): Line coordinate X, Y pairs
invert (bool): True = clear line, False (Default) = draw line.
"""
# Starting point
x1, y1 = coords[0]
# Iterate through coordinates
for i in range(1, len(coords)):
x2, y2 = coords[i]
self.draw_line(x1, y1, x2, y2, invert)
x1, y1 = x2, y2
def draw_pixel(self, x, y, invert=False):
"""Draw a single pixel.
Args:
x (int): X position.
y (int): Y position.
invert (bool): True = clear line, False (Default) = draw line.
"""
if self.is_off_grid(x, y, x, y):
return
self.monoFB.pixel(x, y, int(invert ^ 1))
def draw_polygon(self, sides, x0, y0, r, invert=False, rotate=0):
"""Draw an n-sided regular polygon.
Args:
sides (int): Number of polygon sides.
x0, y0 (int): Coordinates of center point.
r (int): Radius.
invert (bool): True = clear line, False (Default) = draw line.
rotate (Optional float): Rotation in degrees relative to origin.
Note:
The center point is the center of the x0,y0 pixel.
Since pixels are not divisible, the radius is integer rounded
up to complete on a full pixel. Therefore diameter = 2 x r + 1.
"""
coords = []
theta = radians(rotate)
n = sides + 1
for s in range(n):
t = 2.0 * pi * s / sides + theta
coords.append([int(r * cos(t) + x0), int(r * sin(t) + y0)])
# Cast to python float first to fix rounding errors
self.draw_lines(coords, invert)
def draw_rectangle(self, x, y, w, h, invert=False):
"""Draw a rectangle.
Args:
x (int): Starting X position.
y (int): Starting Y position.
w (int): Width of rectangle.
h (int): Height of rectangle.
invert (bool): True = clear line, False (Default) = draw line.
"""
self.monoFB.rect(x, y, w, h, int(invert ^ 1))
def draw_sprite(self, fbuf, x, y, w, h):
"""Draw a sprite.
Args:
fbuf (FrameBuffer): Buffer to draw.
x (int): Starting X position.
y (int): Starting Y position.
w (int): Width of drawing.
h (int): Height of drawing.
"""
x2 = x + w - 1
y2 = y + h - 1
if self.is_off_grid(x, y, x2, y2):
return
self.monoFB.blit(fbuf, x, y)
def draw_text(self, x, y, text, font, invert=False,
rotate=0, spacing=1):
"""Draw text.
Args:
x (int): Starting X position.
y (int): Starting Y position.
text (string): Text to draw.
font (XglcdFont object): Font.
invert (bool): Invert color
rotate (int): Rotation of letter
spacing (int): Pixels between letters (default: 1)
"""
for letter in text:
# Get letter array and letter dimensions
w, h = self.draw_letter(x, y, letter, font, invert, rotate)
# Stop on error
if w == 0 or h == 0:
return
if rotate == 0:
# Fill in spacing
if spacing:
self.fill_rectangle(x + w, y, spacing, h, invert ^ 1)
# Position x for next letter
x += (w + spacing)
elif rotate == 90:
# Fill in spacing
if spacing:
self.fill_rectangle(x, y + h, w, spacing, invert ^ 1)
# Position y for next letter
y += (h + spacing)
elif rotate == 180:
# Fill in spacing
if spacing:
self.fill_rectangle(x - w - spacing, y, spacing,
h, invert ^ 1)
# Position x for next letter
x -= (w + spacing)
elif rotate == 270:
# Fill in spacing
if spacing:
self.fill_rectangle(x, y - h - spacing, w, spacing,
invert ^ 1)
# Position y for next letter
y -= (h + spacing)
else:
print("Invalid rotation.")
return
def draw_text8x8(self, x, y, text):
"""Draw text using built-in MicroPython 8x8 bit font.
Args:
x (int): Starting X position.
y (int): Starting Y position.
text (string): Text to draw.
"""
# Confirm coordinates in boundary
if self.is_off_grid(x, y, x + 8, y + 8):
return
self.monoFB.text(text, x, y)
def draw_vline(self, x, y, h, invert=False):
"""Draw a vertical line.
Args:
x (int): Starting X position.
y (int): Starting Y position.
h (int): Height of line.
invert (bool): True = clear line, False (Default) = draw line.
"""
# Confirm coordinates in boundary
if self.is_off_grid(x, y, x, y + h):
return
self.monoFB.vline(x, y, h, int(invert ^ 1))
def fill_circle(self, x0, y0, r, invert=False):
"""Draw a filled circle.
Args:
x0 (int): X coordinate of center point.
y0 (int): Y coordinate of center point.
r (int): Radius.
invert (bool): True = clear line, False (Default) = draw line.
"""
f = 1 - r
dx = 1
dy = -r - r
x = 0
y = r
self.draw_vline(x0, y0 - r, 2 * r + 1, invert)
while x < y:
if f >= 0:
y -= 1
dy += 2
f += dy
x += 1
dx += 2
f += dx
self.draw_vline(x0 + x, y0 - y, 2 * y + 1, invert)
self.draw_vline(x0 - x, y0 - y, 2 * y + 1, invert)
self.draw_vline(x0 - y, y0 - x, 2 * x + 1, invert)
self.draw_vline(x0 + y, y0 - x, 2 * x + 1, invert)
def fill_ellipse(self, x0, y0, a, b, invert=False):
"""Draw a filled ellipse.
Args:
x0, y0 (int): Coordinates of center point.
a (int): Semi axis horizontal.
b (int): Semi axis vertical.
invert (bool): True = clear line, False (Default) = draw line.
Note:
The center point is the center of the x0,y0 pixel.
Since pixels are not divisible, the axes are integer rounded
up to complete on a full pixel. Therefore the major and
minor axes are increased by 1.
"""
a2 = a * a
b2 = b * b
twoa2 = a2 + a2
twob2 = b2 + b2
x = 0
y = b
px = 0
py = twoa2 * y
# Plot initial points
self.draw_line(x0, y0 - y, x0, y0 + y, invert)
# Region 1
p = round(b2 - (a2 * b) + (0.25 * a2))
while px < py:
x += 1
px += twob2
if p < 0:
p += b2 + px
else:
y -= 1
py -= twoa2
p += b2 + px - py
self.draw_line(x0 + x, y0 - y, x0 + x, y0 + y, invert)
self.draw_line(x0 - x, y0 - y, x0 - x, y0 + y, invert)
# Region 2
p = round(b2 * (x + 0.5) * (x + 0.5) +
a2 * (y - 1) * (y - 1) - a2 * b2)
while y > 0:
y -= 1
py -= twoa2
if p > 0:
p += a2 - py
else:
x += 1
px += twob2
p += a2 - py + px
self.draw_line(x0 + x, y0 - y, x0 + x, y0 + y, invert)
self.draw_line(x0 - x, y0 - y, x0 - x, y0 + y, invert)
def fill_rectangle(self, x, y, w, h, invert=False):
"""Draw a filled rectangle.
Args:
x (int): Starting X position.
y (int): Starting Y position.
w (int): Width of rectangle.
h (int): Height of rectangle.
visble (bool): True (Default) = draw line, False = clear line.
"""
if self.is_off_grid(x, y, x + w - 1, y + h - 1):
return
self.monoFB.fill_rect(x, y, w, h, int(invert ^ 1))
def fill_polygon(self, sides, x0, y0, r, invert=False, rotate=0):
"""Draw a filled n-sided regular polygon.
Args:
sides (int): Number of polygon sides.
x0, y0 (int): Coordinates of center point.
r (int): Radius.
visble (bool): True (Default) = draw line, False = clear line.
rotate (Optional float): Rotation in degrees relative to origin.
Note:
The center point is the center of the x0,y0 pixel.
Since pixels are not divisible, the radius is integer rounded
up to complete on a full pixel. Therefore diameter = 2 x r + 1.
"""
# Determine side coordinates
coords = []
theta = radians(rotate)
n = sides + 1
for s in range(n):
t = 2.0 * pi * s / sides + theta
coords.append([int(r * cos(t) + x0), int(r * sin(t) + y0)])
# Starting point
x1, y1 = coords[0]
# Minimum Maximum X dict
xdict = {y1: [x1, x1]}
# Iterate through coordinates
for row in coords[1:]:
x2, y2 = row
xprev, yprev = x2, y2
# Calculate perimeter
# Check for horizontal side
if y1 == y2:
if x1 > x2:
x1, x2 = x2, x1
if y1 in xdict:
xdict[y1] = [min(x1, xdict[y1][0]), max(x2, xdict[y1][1])]
else:
xdict[y1] = [x1, x2]
x1, y1 = xprev, yprev
continue
# Non horizontal side
# Changes in x, y
dx = x2 - x1
dy = y2 - y1
# Determine how steep the line is
is_steep = abs(dy) > abs(dx)
# Rotate line
if is_steep:
x1, y1 = y1, x1
x2, y2 = y2, x2
# Swap start and end points if necessary
if x1 > x2:
x1, x2 = x2, x1
y1, y2 = y2, y1
# Recalculate differentials
dx = x2 - x1
dy = y2 - y1
# Calculate error
error = dx >> 1
ystep = 1 if y1 < y2 else -1
y = y1
# Calcualte minimum and maximum x values
for x in range(x1, x2 + 1):
if is_steep:
if x in xdict:
xdict[x] = [min(y, xdict[x][0]), max(y, xdict[x][1])]
else:
xdict[x] = [y, y]
else:
if y in xdict:
xdict[y] = [min(x, xdict[y][0]), max(x, xdict[y][1])]
else:
xdict[y] = [x, x]
error -= abs(dy)
if error < 0:
y += ystep
error += dx
x1, y1 = xprev, yprev
# Fill polygon
for y, x in xdict.items():
self.draw_hline(x[0], y, x[1] - x[0] + 2, invert)
def flip(self, flip=True):
"""Set's the display orientation to either 0 or 180 degrees.
Args:
flip(bool): True=180 degrees, False=0 degrees
Note:
Anything currently displayed won't flip until present is called
"""
if flip:
self.write_cmd(self.SEGMENT_MAP_FLIP) # Set segment remap
self.write_cmd(self.COM_OUTPUT_FLIP) # Set COM output scan dir
else:
self.write_cmd(self.SEGMENT_MAP_REMAP) # Set segment remap
self.write_cmd(self.COM_OUTPUT_NORMAL) # Set COM output scan dir
def is_off_grid(self, xmin, ymin, xmax, ymax):
"""Check if coordinates extend past display boundaries.
Args:
xmin (int): Minimum horizontal pixel.
ymin (int): Minimum vertical pixel.
xmax (int): Maximum horizontal pixel.
ymax (int): Maximum vertical pixel.
Returns:
boolean: False = Coordinates OK, True = Error.
"""
if xmin < 0:
print('x-coordinate: {0} below minimum of 0.'.format(xmin))
return True
if ymin < 0:
print('y-coordinate: {0} below minimum of 0.'.format(ymin))
return True
if xmax >= self.width:
print('x-coordinate: {0} above maximum of {1}.'.format(
xmax, self.width - 1))
return True
if ymax >= self.height:
print('y-coordinate: {0} above maximum of {1}.'.format(
ymax, self.height - 1))
return True
return False
def load_sprite(self, path, w, h, invert=False, rotate=0):
"""Load MONO_HMSB bitmap from disc to sprite.
Args:
path (string): Image file path.
w (int): Width of image.
h (int): Height of image.
invert (bool): True = invert image, False (Default) = normal image.
rotate(int): 0, 90, 180, 270
Notes:
w x h cannot exceed 2048
"""
array_size = w * h
with open(path, "rb") as f:
buf = bytearray(f.read(array_size))
fb = FrameBuffer(buf, w, h, MONO_HMSB)
if rotate == 0 and invert is True: # 0 degrees
fb2 = FrameBuffer(bytearray(array_size), w, h, MONO_HMSB)
for y1 in range(h):
for x1 in range(w):
fb2.pixel(x1, y1, fb.pixel(x1, y1) ^ 0x01)
fb = fb2
elif rotate == 90: # 90 degrees
byte_width = (w - 1) // 8 + 1
adj_size = h * byte_width
fb2 = FrameBuffer(bytearray(adj_size), h, w, MONO_HMSB)
for y1 in range(h):
for x1 in range(w):
if invert is True:
fb2.pixel(y1, x1,
fb.pixel(x1, (h - 1) - y1) ^ 0x01)
else:
fb2.pixel(y1, x1, fb.pixel(x1, (h - 1) - y1))
fb = fb2
elif rotate == 180: # 180 degrees
fb2 = FrameBuffer(bytearray(array_size), w, h, MONO_HMSB)
for y1 in range(h):
for x1 in range(w):
if invert is True:
fb2.pixel(x1, y1, fb.pixel((w - 1) - x1,
(h - 1) - y1) ^ 0x01)
else:
fb2.pixel(x1, y1,
fb.pixel((w - 1) - x1, (h - 1) - y1))
fb = fb2
elif rotate == 270: # 270 degrees
byte_width = (w - 1) // 8 + 1
adj_size = h * byte_width
fb2 = FrameBuffer(bytearray(adj_size), h, w, MONO_HMSB)
for y1 in range(h):
for x1 in range(w):
if invert is True:
fb2.pixel(y1, x1,
fb.pixel((w - 1) - x1, y1) ^ 0x01)
else:
fb2.pixel(y1, x1, fb.pixel((w - 1) - x1, y1))
fb = fb2
return fb
def present(self):
"""Present image to display.
"""
x0 = 0
x1 = self.width - 1
if self.width == 64:
# displays with width of 64 pixels are shifted by 32
x0 += 32
x1 += 32
self.write_cmd(self.COLUMN_ADDRESS)
self.write_cmd(x0)
self.write_cmd(x1)
self.write_cmd(self.PAGE_ADDRESS)
self.write_cmd(0)
self.write_cmd(self.pages - 1)
self.write_data(self.mono_image)
def reset(self):
"""Perform reset."""
if hasattr(self, 'rst'):
self.rst(1)
sleep_ms(1)
self.rst(0)
sleep_ms(10)
self.rst(1)
def sleep(self):
"""Put display to sleep."""
self.write_cmd(self.DISPLAY_OFF)
def wake(self):
"""Wake display from sleep."""
self.write_cmd(self.DISPLAY_ON)
def write_cmd_i2c(self, command, *args):
"""Write command to display using I2C.
Args:
command (byte): Display command code.
*args (optional bytes): Data to transmit.
"""
# 0x80 -> Co=1, D/C#=0
self.i2c.writeto_mem(self.address, 0x80, bytearray([command]))
if args:
# 0x40 -> Co=0, D/C#=1
self.i2c.writeto_mem(self.address, 0x40, bytearray(args))
def write_data_i2c(self, data):
"""Write data to display.
Args:
data (bytes): Data to transmit.
"""
# 0x40 -> Co=0, D/C#=1
self.i2c.writeto_mem(self.address, 0x40, data)
def write_cmd_spi(self, command, *args):
"""Write command to display.
Args:
command (byte): Display command code.
*args (optional bytes): Data to transmit.
"""
self.dc(0)
self.cs(0)
self.spi.write(bytearray([command]))
self.cs(1)
# Handle any passed data
if len(args) > 0:
self.write_data(bytearray(args))
def write_data_spi(self, data):
"""Write data to display.
Args:
data (bytes): Data to transmit.
"""
self.dc(1)
self.cs(0)
self.spi.write(data)
self.cs(1)