-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathdcgan.py
156 lines (131 loc) · 5.29 KB
/
dcgan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import numpy as np
from sklearn.utils import shuffle
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import os
from keras.models import Sequential, Model
from keras.layers import Dense, Input
from keras.layers import Reshape
from keras.layers.core import Activation
from keras.layers.normalization import BatchNormalization
from keras.layers.convolutional import UpSampling2D
from keras.layers.convolutional import Convolution2D, MaxPooling2D
from keras.layers.advanced_activations import LeakyReLU
from keras.callbacks import EarlyStopping
from keras.layers.core import Flatten
from keras.optimizers import SGD, Adam
from keras.datasets import mnist
from keras.utils import np_utils
from keras import initializations
def dataInit():
print('Loading the data')
(X_train, Y_train), (X_test, Y_test) = mnist.load_data()
X_train = np.concatenate((X_train, X_test), axis=0)
X_train = (X_train.astype(np.float32) - 127.5)/127.5
print('Training Data: ', X_train.shape)
npRandom = np.random.RandomState(18)
X_noise = []
for i in range(X_train.shape[0]):
randomNoise = npRandom.uniform(-1,1,100)
X_noise.append(randomNoise)
X_noise = np.array(X_noise)
print('Random Noise Data: ', X_noise.shape)
return X_train, X_noise
def saveImage(imageData, imageName, epoch):
f, ax = plt.subplots(16, 8)
k = 0
for i in range(16):
for j in range(8):
pltImage = imageData[k][0]
ax[i,j].imshow(pltImage, interpolation='nearest',cmap='gray_r')
ax[i,j].axis('off')
k = k+1
f.set_size_inches(18.5, 10.5)
f.savefig('images/'+imageName+'_after_'+str(epoch)+'_epoch.png', dpi = 100, bbox_inches='tight', pad_inches = 0)
plt.close(f)
return None
def initNormal(shape, name=None):
return initializations.normal(shape, scale=0.02, name=name)
if __name__ == '__main__':
batchSize = 128
nbEpoch = 200
decayIter = 100
lr = 0.0002
X_train, X_noise = dataInit()
X_train = X_train[:, np.newaxis, :, :]
numExamples = (X_train.shape)[0]
numBatches = int(numExamples/float(batchSize))
print('Number of examples: ', numExamples)
print('Number of Batches: ', numBatches)
print('Number of epochs: ', nbEpoch)
adam=Adam(lr=lr, beta_1=0.5 )
print('Generator Model')
generator = Sequential()
generator.add(Dense( input_dim=100, output_dim=(128*7*7), init=initNormal))
generator.add(Activation('relu'))
generator.add(Reshape((128, 7, 7)))
generator.add(UpSampling2D(size=(2, 2)))
generator.add(Convolution2D(64, 5, 5, border_mode='same'))
generator.add(Activation('relu'))
generator.add(UpSampling2D(size=(2, 2)))
generator.add(Convolution2D(1, 5, 5, border_mode='same'))
generator.add(Activation('tanh'))
generator.compile(loss='binary_crossentropy', optimizer=adam, metrics=['accuracy'])
print('Discriminator Model')
discriminator = Sequential()
discriminator.add(Convolution2D(64, 5, 5, border_mode='same', subsample=(2,2), input_shape=(1,28,28), init=initNormal))
discriminator.add(LeakyReLU(0.2))
discriminator.add(Convolution2D(128, 5, 5, border_mode='same', subsample=(2,2)))
discriminator.add(LeakyReLU(0.2))
discriminator.add(Flatten())
discriminator.add(Dense(1))
discriminator.add(Activation('sigmoid'))
discriminator.compile(loss='binary_crossentropy', optimizer=adam, metrics=['accuracy'])
discriminator.trainable = False
print('DCGAN model')
dcganInput = Input(shape=(100,))
x = generator(dcganInput)
dcganOutput = discriminator(x)
dcgan = Model(input=dcganInput, output=dcganOutput)
dcgan.compile(loss='binary_crossentropy', optimizer=adam, metrics=['accuracy'])
discriminator.trainable = True
if not os.path.exists('images'):
os.makedirs('images')
if not os.path.exists('models'):
os.makedirs('models')
if not os.path.exists('metrics'):
os.makedirs('metrics')
dLoss = []
gLoss = []
for epoch in range(1, nbEpoch + 1):
print('Epoch: ', epoch)
for i in range(numBatches):
noisePredictBatch = X_noise[np.random.randint(numExamples, size = batchSize)]
noiseDataBatch = generator.predict(noisePredictBatch)
origDataBatch = X_train[np.random.randint(numExamples, size = batchSize)]
noiseLabelsBatch, origLabelsBatch = np.zeros(batchSize).astype(int), np.ones(batchSize).astype(int)
trainBatch = np.concatenate((noiseDataBatch, origDataBatch), axis = 0)
trainLabels = np.concatenate((noiseLabelsBatch, origLabelsBatch))
trainBatch, trainLabels = shuffle(trainBatch, trainLabels)
discriminatorLoss = discriminator.train_on_batch(trainBatch, trainLabels)
dcganLabels = np.ones(batchSize).astype(int)
discriminator.trainable = False
dcganLoss = dcgan.train_on_batch(noisePredictBatch, dcganLabels)
discriminator.trainable = True
dLoss.append(discriminatorLoss)
gLoss.append(dcganLoss)
if (epoch % 5 == 0) or (epoch == 1):
saveImage(noiseDataBatch, 'generated', epoch)
print('after epoch: ', epoch)
print ('dcgan Loss: ', dcganLoss, '\t discriminator loss', discriminatorLoss)
generator.save('models/generator_'+str(epoch)+'.h5')
if epoch > decayIter :
lrD = discriminator.optimizer.lr.get_value()
lrG = generator.optimizer.lr.get_value()
discriminator.optimizer.lr.set_value((lrD - lr/decayIter).astype(np.float32))
generator.optimizer.lr.set_value((lrG - lr/decayIter).astype(np.float32))
print('learning rate linearly decayed')
np.save('metrics/dLoss.npy', np.array(dLoss))
np.save('metrics/gLoss.npy', np.array(gLoss))
print('Peace')