-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtextmining.py
243 lines (177 loc) · 6.87 KB
/
textmining.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
import matplotlib.pyplot as plt
def importAbstracts(path):
''' Imports abstracts from a given @path '''
import pandas as pd
from sklearn.feature_extraction.text import CountVectorizer
file = pd.read_csv(str(path))
# importing abstracts
abstracts = file['Abstract'].tolist()
# data transformation
vec = CountVectorizer()
X = vec.fit_transform(abstracts)
df = pd.DataFrame(X.toarray(), columns=vec.get_feature_names())
return df
##df[~(df == 0). all(axis=1)]
def makeConjugates(df, string):
''' Makes a data frame with row sums for conjugates '''
data = df.filter(like=str(string))
return data
def makeRowSums(df, sparse=True):
''' Creates non-zero data frame for given conjugates '''
rowsums = df.sum(axis=1)
if sparse == True:
return rowsums
else:
return rowsums[~(rowsums == 0)]
def subsetData(df, exp, value):
''' Filter data frame for given expression ==, <=, >=, <, >, != '''
if exp == 'eq':
return df[(df == value).all(axis=1)]
elif exp == 'le':
return df[(df <= value).all(axis=1)]
elif exp == 'ge':
return df[(df >= value).all(axis=1)]
elif exp == 'gt':
return df[(df > value).all(axis=1)]
elif exp == 'lt':
return df[(df < value).all(axis=1)]
elif exp == 'ne':
return df[~(df == value).all(axis=1)]
else:
print('Check your arguents')
def saveData(df, filename):
''' Saves the data frame to the given input path argument '''
import os
if os.path.isdir('output'):
path = os.path.join('output', filename)
df.to_csv(path)
else:
os.mkdir('output')
path = os.path.join('output', filename)
df.to_csv(path)
def sparcityDensity(df):
''' Calculates both sparsity and density of the data set '''
sparsity = (df.to_numpy() == 0).mean()
return (sparsity, 1-sparsity)
def chiSquareFitnessTest(*args):
''' Performs chisquare test of fitness on univariate data '''
from scipy import stats
chi2, chi_p = stats.chisquare(*args)
return (chi2, chi_p)
def normalityTest(df):
''' Performs D'Augustinos, Person normality test for given pandas data frame '''
from scipy import stats
return stats.normaltest(df)
def oneSampleTTest(df, am=0):
''' Performs one sample T Test test for given pandas data frame '''
from scipy import stats
return stats.ttest_1samp(df, am)
def oneWayFTest(*args):
''' Performs one way F Test test for given pandas data frame '''
from scipy import stats
## for arg in args:
## print(arg)
return stats.f_oneway(*args)
def medianTest(*args):
''' Performs bi/multi variate median test for given pandas data frame '''
from scipy import stats
stat, p, med, tbl = stats.median_test(*args)
return (stat, p)
def moodsTest(*args):
''' Performs bi/multi variate moods test for given pandas data frame '''
from scipy import stats
z, p = stats.mood(*args)
return (z, p)
def kruskalWallisTest(*args):
''' Performs bi/multi variate kruskal wallis test for given pandas data frame '''
from scipy import stats
kw_s, kw_p = stats.kruskal(*args)
return (kw_s, kw_p)
def concatenateDataSets(*args):
''' Joins multivariate data sets into a single/composite data set '''
import pandas as pd
frames = [*args]
df = pd.concat(frames, axis=1)
return df
def makeTargetVariable(df1, df2, names = [1, 2, 3]):
''' Makes target variable for principal component analysis '''
import pandas as pd
maxs1 = df1.max(axis=1)
maxs2 = df2.max(axis=1)
target = []
for i, j in zip(maxs1, maxs2):
if i > j:
target.append(names[0])
elif i < j:
target.append(names[1])
else:
target.append(names[2])
return pd.Series(target, name= 'target')
def PCA(data, target):
''' https://builtin.com/machine-learning/pca-in-python
https://www.datacamp.com/tutorial/principal-component-analysis-in-python
'''
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
import pandas as pd
features = data.columns
x = data.loc[:, features].values
y = target.values
x = StandardScaler().fit_transform(x)
pca = PCA(n_components=2)
principalComponents = pca.fit_transform(x)
principalDf = pd.DataFrame(data = principalComponents, columns = ['principal component 1', 'principal component 2'])
finalDf = pd.concat([principalDf, target], axis = 1)
return finalDf
def plotPCA(df, targets):
''' Makes visual for PCA 2 components solution '''
import matplotlib.pyplot as plt
fig = plt.figure(figsize = (8,8))
ax = fig.add_subplot(1,1,1)
ax.set_xlabel('Principal Component 1', fontsize = 10)
ax.set_ylabel('Principal Component 2', fontsize = 10)
ax.set_title('2 component PCA', fontsize = 15)
targets = targets
colors = ['r', 'g', 'b']
for target, color in zip(targets,colors):
indicesToKeep = df['target'] == target
ax.scatter(df.loc[indicesToKeep, 'principal component 1']
, df.loc[indicesToKeep, 'principal component 2']
, c = color
, s = 50)
ax.legend(targets); ax.grid()
plt.show()
if __name__ == '__main__':
# IMPORT DATA
abstracts = importAbstracts('D:\Research\PAPERS\covid19\policy innovation\scopus.csv')
## print(abstracts.head())
## print(len(abstracts.columns))
## print(abstracts[['technology', 'innovation']])
plcy_cjgts = makeConjugates(abstracts, 'policy')
## plcy_df = makeRowSums(plcy_cjgts)
## print(plcy_df)
## print(subsetData(plcy_cjgts, 'ne', 0))
# PREPARE DATA
inno_cjgts = makeConjugates(abstracts, 'innovation')
## inno_df = makeRowSums(inno_cjgts)
## print(subsetData(inno_cjgts, 'ne', 0))
## saveData(inno_cjgts, 'out.csv')
# SPARSITY & DENSITY
## print(sparcityDensity(inno_df))
# UNIVARIATE ANALYSIS
## print(chiSquareFitnessTest(inno_cjgts))
## print(normalityTest(inno_cjgts))
## print(oneSampleTTest(inno_cjgts))
# BIVARIATE ANALYSIS
## print(oneWayFTest(inno_cjgts['innovation'], inno_cjgts['innovationand'], inno_cjgts['innovations']))
## print(medianTest(inno_cjgts['innovation'], inno_cjgts['innovationand'], inno_cjgts['innovations']))
## print(moodsTest(inno_cjgts['innovation'], inno_cjgts['innovationand']))
## print(kruskalWallisTest(inno_cjgts['innovation'], inno_cjgts['innovationand'], inno_cjgts['innovations']))
# MULTIVARIATE ANALYSIS
data = concatenateDataSets(plcy_cjgts, inno_cjgts)
target = makeTargetVariable(plcy_cjgts, inno_cjgts, names = ['policy', 'innovation', 'other'])
## print(data.columns)
## print(data.head())
df = PCA(data, target)
## print(df.head)
plotPCA(df, targets = ['policy', 'innovation', 'other'])