forked from ARGOeu/eosc-recommender-metrics
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrsmetrics.py
executable file
·591 lines (505 loc) · 19.3 KB
/
rsmetrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
#!/usr/bin/env python3
import sys
import traceback
import argparse
import json
import yaml
import pymongo
from datetime import datetime
import pandas as pd
import numpy as np
from inspect import getmembers, isfunction
from pymongoarrow.api import aggregate_pandas_all
import logging
# local lib
import metrics as m
import get_catalog
__copyright__ = (
"© "
+ str(datetime.utcnow().year)
+ ", National Infrastructures for Research and Technology (GRNET)"
)
__status__ = "Production"
__version__ = "0.2.2"
logging.basicConfig(
stream=sys.stdout,
level=logging.DEBUG,
format="[%(asctime)s] %(levelname)s %(message)s",
)
def print_help(func):
def inner():
print("RS Metrics Evaluator")
print("Version: " + __version__)
print(__copyright__ + "\n")
func()
return inner
# based on the schema it returns a pandas Series (self)
# with registered users only, accordingly
def find_registered(self, schema):
if schema == 'current':
return self.notnull()
else:
return self != -1
# function is attached to a pandas Series (self)
pd.Series.find_registered = find_registered
parser = argparse.ArgumentParser(
prog="rsmetrics",
description="Calculate metrics for the EOSC Marketplace RS",
add_help=False,
)
parser.print_help = print_help(parser.print_help)
parser._action_groups.pop()
optional = parser.add_argument_group("optional arguments")
optional.add_argument(
"-c",
"--config",
metavar=("FILEPATH"),
help="override default configuration file (./config.yaml)",
nargs="?",
default="./config.yaml",
type=str,
)
optional.add_argument(
"-p",
"--provider",
metavar=("STRING"),
help=("name of the provider-rs specified "
"in the configuration file"),
nargs="?",
default="marketplace_rs",
type=str,
)
optional.add_argument(
"-t",
"--tag",
metavar=("STRING"),
help=("tag results e.g. year-month"),
nargs="?",
default="",
type=str,
)
optional.add_argument(
"-s",
"--starttime",
metavar=("DATETIME"),
help=("calculate metrics starting from given datetime in ISO format (UTC) "
"e.g. YYYY-MM-DD"),
nargs="?",
default=None,
)
optional.add_argument(
"-e",
"--endtime",
metavar=("DATETIME"),
help=("calculate metrics ending to given datetime in ISO format (UTC) "
"e.g. YYYY-MM-DD"),
nargs="?",
default=None,
)
optional.add_argument("--legacy", help=("enable in order to run calculation \
based on legacy schema"), action="store_true")
optional.add_argument(
"--use-cache",
help=("Enable to perform calculations without resources' retrieval"),
action="store_true",
)
optional.add_argument(
"--ignore-timestamp",
help=("Enable to perform calculations without checking if items are \
within the requested datetime range"),
action="store_true",
)
optional.add_argument(
"-h", "--help", action="help", help="show this help message and exit"
)
optional.add_argument(
"-V", "--version", action="version", version="%(prog)s v" + __version__
)
optional.add_argument("-v", action="store_true")
args = parser.parse_args()
logging.disable = not args.v
run = m.Runtime(args.legacy)
if args.starttime:
args.starttime = datetime.fromisoformat(args.starttime)
if args.endtime:
edt = datetime.fromisoformat(args.endtime)
args.endtime = datetime.combine(edt, datetime.max.time())
if args.starttime and args.endtime:
if args.endtime < args.starttime:
print("End date must be older than start date")
sys.exit(0)
# read configuration file
with open(args.config, "r") as _f:
config = yaml.load(_f, Loader=yaml.FullLoader)
if args.provider not in [p["name"] for p in config["providers"]]:
print("Provider must be in the configuration")
sys.exit(0)
# if no cache, retrieve resources
# using the get_catalog tool
if not args.use_cache:
# call get_catalog
class GetCatalogArgs:
pass
_args = GetCatalogArgs()
_args.output = False
_args.batch = 100
_args.limit = -1
_args.datastore = config["datastore"]
_args.url = config['service']['service_list_url']
_args.provider = args.provider
try:
for cat in config['service']['category'][_args.provider]:
_args.category = cat
get_catalog.main(_args)
except Exception as e:
print("Error: Could not retrieve {} items from {}. See: {}".format(
_args.category, _args.url, e))
raise
# read data
# connect to db server
datastore = pymongo.MongoClient(config["datastore"],
uuidRepresentation="pythonLegacy")
# use db
rsmetrics_db = datastore[config["datastore"].split("/")[-1]]
# establish a matching query to select data for correct provider
match_query = {}
# schema decision table based on which data to calculate metrics upon
# metrics computations consider both registered and anonymous users
# schema | registered | anonymous
# current | aai_uid=!None | aai_uid=null and user_id=null
# legacy | user_id=!None | user_id == -1
if not args.legacy:
match_query = {
"$or": [
{"aai_uid": {"$ne": None}},
{"$and": [
{"aai_uid": {"$eq": None}},
{"user_id": {"$eq": None}}
]}
]}
else:
match_query = {
"$or": [
{"user_id": {"$ne": None}},
{"$and": [
{"user_uid": {"$eq": -1}}
]}
]}
# start/end date of request
if args.starttime is not None:
if "timestamp" not in match_query:
match_query["timestamp"] = {}
match_query["timestamp"]["$gte"] = args.starttime
if args.endtime is not None:
if "timestamp" not in match_query:
match_query["timestamp"] = {}
match_query["timestamp"]["$lte"] = args.endtime
# merge dictionaries to create two seperate match queries (one for user
# actions and one for rec)
match_ua = {**match_query}
match_rs = {**match_query, "provider": args.provider}
# first column (_id) ignored, where iloc is used
# pymongoarrow lib provides efficient and direct load of query results into
# panda data frames using functions such as find_pandas_all and
# aggregate_pandas_all
logging.info("Reading user actions...")
run.user_actions_all = pd.DataFrame(
list(rsmetrics_db["user_actions"].find(match_ua,
{"_id": 0}))
)
# it seems that pymongoarrow returns pandas dataframe with
# convert_dtypes=True, therefore None values are treated as np.nan
# keep only None for further processing
run.user_actions_all = run.user_actions_all.replace(np.nan, None)
for _col_id in ['aai_uid', 'user_id', 'source_resource_id',
'target_resource_id']:
if _col_id not in run.user_actions_all.columns:
# Create a new column with None values
run.user_actions_all[_col_id] = None
# if aai_uid is null then anonymous.
# If anonymous copy the unique_id to aai_uid.
# Thus, all entries have aai_uid (both registered and anonymous)
if not args.legacy:
run.user_actions_all['registered'] = run.user_actions_all.apply(
lambda row:
False if pd.isnull(row['aai_uid'])
else True, axis=1)
run.user_actions_all['aai_uid'] = run.user_actions_all.apply(
lambda row:
row['unique_id'] if not row['registered']
else row['aai_uid'], axis=1)
# Same logic but for legacy mode:
# if user_id == -1 then anonymous.
# If anonymous copy 0 to user_id.
# Thus, all entries have user_id >= 0 (both registered and anonymous)
else:
run.user_actions_all['registered'] = run.user_actions_all.apply(
lambda row:
False if row['user_id'] == -1
else True, axis=1)
run.user_actions_all['user_id'] = run.user_actions_all.apply(
lambda row:
0 if not row['registered']
else row['user_id'], axis=1)
logging.info("Reading recommendations...")
if args.provider == "athena":
# aggregate_pandas_all directly returns a pandas dataframe
run.recommendations = aggregate_pandas_all(
rsmetrics_db["recommendations"],
[
{"$match": match_rs},
{
"$addFields": {
"x": {"$zip": {"inputs": ["$resource_ids",
"$resource_scores"]}}
}
},
{"$unwind": "$x"},
{
"$addFields": {
"resource_ids": {"$first": "$x"},
"resource_scores": {"$last": "$x"},
}
},
],
).iloc[:, 1:-1]
else:
run.recommendations = \
pd.DataFrame(list(
rsmetrics_db["recommendations"].aggregate([
{"$match": match_rs},
{"$unwind": "$resource_ids"}])))
# it seems that pymongoarrow returns pandas dataframe with
# convert_dtypes=True, therefore None values are treated as np.nan
# keep only None for further processing
run.recommendations = run.recommendations.replace(np.nan, None)
run.recommendations.rename(columns={'resource_ids': 'resource_id'},
inplace=True)
for _col_id in ['aai_uid', 'user_id']:
if _col_id not in run.recommendations.columns:
# Create a new column with None values
run.recommendations[_col_id] = None
# if aai_uid is null then anonymous.
# If anonymous copy the unique_id to aai_uid.
# Thus, all entries have aai_uid (both registered and anonymous)
if not args.legacy:
run.recommendations['registered'] = run.recommendations.apply(
lambda row: False if
pd.isnull(row['aai_uid'])
else True, axis=1)
run.recommendations['aai_uid'] = run.recommendations.apply(
lambda row: row['unique_id']
if not row['registered']
else row['aai_uid'], axis=1)
# Same logic but for legacy mode:
# if user_id == -1 then anonymous.
# If anonymous copy 0 to user_id.
# Thus, all entries have user_id >= 0 (both registered and anonymous)
else:
run.recommendations['registered'] = run.recommendations.apply(
lambda row: False if
row['aai_uid'] == -1
else True, axis=1)
run.recommendations['user_id'] = run.recommendations.apply(
lambda row: 0
if not row['registered']
else row['user_id'], axis=1)
logging.info("Reading items...")
run.items = pd.DataFrame(
list(rsmetrics_db["resources"].find(
{
"$and": [
{"provider": args.provider},
{"type": {"$in":
config['service']['category'][args.provider]}},
{"$or": [{"created_on": {"$lte": args.endtime}},
{"created_on": None}]},
{"$or": [{"deleted_on": {"$gte": args.starttime}},
{"deleted_on": None}]},
{"timestamp": {"$lte": args.endtime}}
if (args.endtime and not args.ignore_timestamp) else {},
{"timestamp": {"$gte": args.starttime}}
if (args.starttime and not args.ignore_timestamp) else {},
]
},
{"_id": 0}
))
)
# from duplicates keep the latest entry
run.items = run.items.sort_values(by='timestamp', ascending=False)
run.items = run.items.drop_duplicates(subset='id', keep='first')
if not args.legacy:
run.items['id'] = run.items['id'].astype(str)
for _col_id in ['category', 'scientific_domain']:
if _col_id not in run.items.columns:
# Create a new column with None values
run.items[_col_id] = None
# The users dataframe is the users found in the user actions
# that have been matched based on the query filters
# users dataframe is table of two columns (id and accessed resources)
# Accessed resources is all unique service ids (apart from -1, i.e. not known)
# found in both source_resource_id or target_resource_id lists
logging.info("Reading users...")
# aggregate_pandas_all directly returns a pandas dataframe
# get both registered and anonynmous
users_ids = {"$ifNull": ["$aai_uid", "$unique_id"]}
run.users = pd.DataFrame(list(rsmetrics_db["user_actions"].aggregate(
[
{"$match": match_ua},
{"$group": {
"_id": '$'+run.id_field if args.legacy else users_ids,
"source_ids": {"$addToSet": "$source_resource_id"},
"target_ids": {"$addToSet": "$target_resource_id"}
}},
{"$project": {
"accessed_resources": {
"$setUnion": [
{"$filter": {
"input": {"$setUnion": ["$source_ids", "$target_ids"]},
"as": "resource_id",
"cond": {
"$and": [
{"$ne": ["$$resource_id", -1]},
{"$ne": ["$$resource_id", None]}
]
}
}}, []]
}
}}
])))
run.users = run.users.rename(columns={'_id': 'id'})
if args.legacy:
logging.info("Reading categories...")
run.categories = pd.DataFrame(
list(rsmetrics_db["category"].find({},
{"_id": 0}))
)
logging.info("Reading scientific domains...")
run.scientific_domains = pd.DataFrame(
list(rsmetrics_db["scientific_domain"].find({},
{"_id": 0}))
)
# Filtering collections
try:
# keeps only registered users
run.users = run.users[run.users['id'].find_registered(run.schema)]
# convert timestamp column to datetime object
run.user_actions_all["timestamp"] = (
pd.to_datetime(run.user_actions_all["timestamp"])
)
# services ids are returned as float with trailing .0,
# so they are converted to str(int))
# also ignore None values by assign them '0' and then back to None
if not args.legacy:
for res_id_type in ['source_resource_id', 'target_resource_id']:
run.user_actions_all[res_id_type] = \
run.user_actions_all[res_id_type].fillna(0).astype(str)
run.user_actions_all[res_id_type] = \
run.user_actions_all[res_id_type].apply(lambda x: x[:-2] if
x[-2:] == '.0' else x)
run.user_actions_all[res_id_type] = \
run.user_actions_all[res_id_type].replace('0', None)
# remove user actions when item does not exist in items' catalog
# not-known items (i.e. -1 or None) are not excluded
# (there is no need to do this for users, since users are already
# built upon user actions)
# also a source_resource_id or target_resource_id will always be
# an string (However, [int] -1 or None indicates not known)
run.user_actions = run.user_actions_all[
(run.user_actions_all["source_resource_id"]
.isin(run.items["id"].tolist() + ['-1', -1, None]))
]
run.user_actions = run.user_actions[
(run.user_actions["target_resource_id"]
.isin(run.items["id"].tolist() + ['-1', -1, None]))
]
run.recommendations["timestamp"] = (
pd.to_datetime(run.recommendations["timestamp"])
)
# remove recommendations when user or service does not exist in users' or
# items' catalogs
# anonymous users (i.e. -1 or None in legacy or current mode respectively)
# are not excluded
# not-known items (i.e. -1 or None) are not excluded
# (having both -1 and None cover both schemas -current or legacy-)
# meanwhile, current schema can not have -1 while legacy None,
# so there is no issue to filter both entries concurrently
run.recommendations = run.recommendations[
run.recommendations[run.id_field].isin(run.users["id"].tolist() +
[-1, None])
]
run.recommendations["resource_id"] =\
run.recommendations["resource_id"].astype(str)
# we have added None which is the new state of unkown resources
# and -1 for backward compatibility
run.recommendations = run.recommendations[
run.recommendations["resource_id"]
.isin(run.items["id"].tolist() + ['-1', -1, None])
]
except Exception as e:
print(''.join(traceback.format_exception(None, e, e.__traceback__)))
pass
data_errors = []
if len(run.user_actions) == 0:
data_errors.append("No user actions found")
if len(run.recommendations) == 0:
data_errors.append("No recommendations found")
if len(run.items) == 0:
data_errors.append("No services found")
if len(run.users) == 0:
data_errors.append("No users found")
if data_errors:
for data_error in data_errors:
logging.error(data_error)
logging.error("Not enough data. Skipping computations!")
sys.exit(1)
run.provider = args.provider
output = {"timestamp": str(datetime.utcnow())}
metrics = []
statistics = []
# get all function names in metrics module
func_names = list(map(lambda x: x[0], getmembers(m, isfunction)))
# keep all function names except decorators such as metric and statistic
func_names = list(filter(lambda x: not (x == "metric" or x == "statistic"),
func_names))
for func_name in func_names:
# get function based on function name
func = getattr(m, func_name)
# if function has attribute kind
# (which means that evaluates a metric or a static)
if hasattr(func, "kind"):
kind = getattr(func, "kind")
logging.info("Evaluating {}: {}...".format(kind, func_name))
# execute and get value
value = func(run)
documentation = ""
# if has documentation ge it
if hasattr(func, "doc"):
documentation = func.doc
# prepare json output object with function name, execution result
# and optional documentation
item = {"name": func_name, "value": value, "doc": documentation}
# if metric add it to the metrics list else to the statistics list
if kind == "metric":
metrics.append(item)
elif kind == "statistic":
statistics.append(item)
# Add the two lists to the final output onject
output["metrics"] = metrics
output["statistics"] = statistics
output["provider"] = args.provider
output["schema"] = run.schema
if args.tag is not None:
output["name"] = args.provider + " - " + args.tag
else:
output["name"] = args.provider
output["errors"] = run.errors
# this line is necessary in order to store the output to MongoDB
jsonstr = json.dumps(output, indent=4)
# keep one metrics collection per schema
rsmetrics_db["metrics"].delete_many({"name": output["name"]})
rsmetrics_db["metrics"].insert_one(output)
# result in stdout console (not in logs)
print(jsonstr)
logging.info("Metrics computation finished for {}...".format(
args.provider))