-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathagent.py
139 lines (108 loc) · 4.02 KB
/
agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import torch
import random
import numpy as np
from collections import deque
from game import SnakeGame, Direction, Point
from model import Linear_QNet, QTrainer
MAX_MEMORY = 100_000
BATCH_SIZE = 1000
LR = 0.001
class Agent:
def __init__(self) -> None:
self.number_of_games = 0
self.epsilon = 0 # randomness
self.gamma = 0.9 # discount rate
self.memory = deque(maxlen=MAX_MEMORY) # popleft()
self.model = Linear_QNet(11, 256, 3)
self.trainer = QTrainer(self.model ,LR, self.gamma)
def get_state(self, game):
head = game.snake[0]
point_l = Point(head.x - 20, head.y)
point_r = Point(head.x + 20, head.y)
point_u = Point(head.x, head.y - 20)
point_d = Point(head.x, head.y + 20)
dir_l = game.direction == Direction.LEFT
dir_r = game.direction == Direction.RIGHT
dir_u = game.direction == Direction.UP
dir_d = game.direction == Direction.DOWN
state = [
# Danger Straight
(dir_r and game.is_collision(point_r)) or
(dir_l and game.is_collision(point_l)) or
(dir_u and game.is_collision(point_u)) or
(dir_d and game.is_collision(point_d)),
# Danger right
(dir_r and game.is_collision(point_d)) or
(dir_l and game.is_collision(point_u)) or
(dir_u and game.is_collision(point_r)) or
(dir_d and game.is_collision(point_l)),
# Danger left
(dir_r and game.is_collision(point_u)) or
(dir_l and game.is_collision(point_d)) or
(dir_u and game.is_collision(point_l)) or
(dir_d and game.is_collision(point_r)),
dir_l,
dir_r,
dir_u,
dir_d,
game.food.x < game.head.x,
game.food.x > game.head.x,
game.food.y < game.head.y,
game.food.y > game.head.y,
]
return np.array(state, dtype=int)
def remember(self, state, action, reward, next_state, done):
self.memory.append((state, action, reward, next_state, done))
def train_long_memory(self):
if len(self.memory) > BATCH_SIZE:
mini_sample = random.sample(self.memory, BATCH_SIZE)
else:
mini_sample = self.memory
states, actions, rewards, next_states, dones = zip(*mini_sample)
self.trainer.train_step(states, actions, rewards, next_states, dones)
def train_short_memory(self, state, action, reward, next_state, done):
self.trainer.train_step(state, action, reward, next_state, done)
def get_action(self, state):
self.epsilon = 80 - self.number_of_games
action = [0,0,0]
if random.randint(0, 200) < self.epsilon:
move = random.randint(0, 2)
else:
state0 = torch.tensor(state, dtype=torch.float)
prediction = self.model(state0)
move = torch.argmax(prediction).item()
action[move] = 1
return action
def train():
max_score = 0
agent = Agent()
game = SnakeGame()
total_score = 0
while True:
old_state = agent.get_state(game)
action = agent.get_action(old_state)
reward, done, score = game.play_step(action)
new_state = agent.get_state(game)
agent.train_short_memory(old_state, action, reward, new_state, done)
agent.remember(old_state, action, reward, new_state, done)
if done:
game.reset()
agent.number_of_games += 1
agent.train_long_memory()
if score > max_score:
max_score = score
agent.model.save()
total_score += score
mean_score = total_score / agent.number_of_games
print(
"Game",
agent.number_of_games,
"Score",
score,
"Record",
max_score,
"Mean Score",
mean_score,
)
if __name__ == "__main__":
train()