-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathHASC_model.py
executable file
·953 lines (795 loc) · 42.4 KB
/
HASC_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
# coding: utf-8
import tensorflow as tf
import os
import cPickle as pickle
import numpy
import random
from multiprocessing import Process, Queue
import tensorflow as tf
from collections import defaultdict
import os
import numpy as np
import math
import time
import pdb
import cPickle as pickle
user_ratings_original=np.load('./data/user_favor.npy').item()
test_ratings=np.load('./data/mymodel_test.npy').item()
val_ratings=np.load('./data/mymodel_val.npy').item()
user_ratings=np.load('./data/mymodel_train.npy').item()
user_ups=np.load('./data/user_ups.npy')
ups_user=np.load('./data/ups_user.npy')
user_follows=np.load('./data/user_follow.npy')
img_feature=np.load('./data/image_feature.npy').item()
#img_feature=img_feature1/15.0
vision_repre=np.load('./data/user_feature_contnt_style.npy').item()
#vision_repre=vision_repre1/15.0
user_id_mapping=len(user_ratings_original)
item_id_mapping=len(ups_user)
print 'user:',user_id_mapping,'item:',item_id_mapping
u_follow_all=[[]]*user_id_mapping
u_follow_user_all=[[]]*user_id_mapping
u_follow_split_all=[[]]*user_id_mapping
u_vision_f_all_b=[[]]*user_id_mapping
for u in range(user_id_mapping):
u_follow=[]
u_follow_user=[]
u_vision_f_b=[]
u_vision_f_a=[]
count_follow=0
for follow_i in user_follows[u]:
u_follow.append(follow_i)
u_follow_user.append(u)
u_vision_f_b.append(vision_repre[follow_i])
count_follow=count_follow+1
u_follow_all[u]=(u_follow)
u_follow_user_all[u]=u_follow_user
u_follow_split_all[u]=(count_follow)
u_vision_f_all_b[u]=u_vision_f_b
u_up_all=[[]]*user_id_mapping
u_up_user_all=[[]]*user_id_mapping
u_up_feature_all=[[]]*user_id_mapping
u_up_split_all=[[]]*user_id_mapping
for u in range(user_id_mapping):
u_up=[]
u_up_user=[]
u_up_feature=[]
count_up=0
for up_i in user_ups[u]:
u_up.append(up_i)
u_up_user.append(u)
u_up_feature.append(img_feature[up_i])
count_up=count_up+1
u_up_all[u]=(u_up)
u_up_user_all[u]=u_up_user
u_up_feature_all[u]=u_up_feature
u_up_split_all[u]=(count_up)
def beatch_train_generator(train_ratings,train_ratings_original,user_count,item_count,batch_size,u_i,index_batch):
t_512=[[]]*batch_size
img_i=[[]]*batch_size
img_j=[[]]*batch_size
u_up_512=[[]]*batch_size
u_up_user_512=[[]]*batch_size
u_up_split_512=[[]]*batch_size
u_up_feature_512=[[]]*batch_size
u_follow_512=[[]]*batch_size
u_follow_user_512=[[]]*batch_size
u_follow_split_512=[[]]*batch_size
vision_repre_512_a=[[]]*batch_size
vision_repre_512_b=[[]]*batch_size
vision_repre_u_aspect_512=[[]]*batch_size
gather_upload=[]
gather_social=[]
#start1=time.time()
count=0
for u,i in u_i:
t = []
j = np.random.randint(item_count)
while j in train_ratings_original[u]:
j = np.random.randint(item_count)
t_512[count]=([u,i,ups_user[i],j,ups_user[j]])
vision_repre_512_a[count]=vision_repre[u]
vision_repre_512_b[count]=u_vision_f_all_b[u]
u_up_512[count]=u_up_all[u]#(u_up)
u_up_user_512[count]= u_up_user_all[u]#(u_up_user)
u_up_split_512[count]= u_up_split_all[u]#(count_up )
u_up_feature_512[count]=u_up_feature_all[u]#(u_up_feature)
#np.zeros(u_up_split_all[u])+count
gather_upload=np.concatenate((gather_upload,np.zeros(u_up_split_all[u])+count))
# for i in range(u_up_split_all[u]):
# gather_upload.append(count)
u_follow_512[count]=u_follow_all[u]#(u_follow)
u_follow_user_512[count]=u_follow_user_all[u]#(u_follow_user)
u_follow_split_512[count]=u_follow_split_all[u]#(count_follow)
#for i in range(u_follow_split_all[u]):
#gather_social.append(count)
gather_social=np.concatenate((gather_social,np.zeros(u_follow_split_all[u])+count))
count=count+1
one_part=([numpy.asarray(t_512),numpy.asarray(gather_upload),numpy.asarray(gather_social),numpy.asarray(vision_repre_512_a),numpy.asarray(vision_repre_512_b),numpy.asarray(u_up_512), numpy.asarray(u_up_user_512),numpy.asarray(u_up_split_512),numpy.asarray(u_up_feature_512),numpy.asarray(u_follow_512),numpy.asarray(u_follow_user_512),numpy.asarray(u_follow_split_512)])
#start2=time.time()
#print 'one_part:',start2-start1
return one_part
def one_train_generator(train_ratings,train_ratings_original,user_count,item_count,batch_size):
all_result=[]
result=dict()
result_count=0
for u in range(user_count):
for i in train_ratings[u]:
result[result_count]=[u,i]
result_count=result_count+1
result_count=result_count-1
result_all_train_u=range(result_count)
random.shuffle(result_all_train_u)
batch_size_u_i=[]
add_to_512=batch_size-result_count%batch_size
for k in range(add_to_512):
result_all_train_u.append(result_all_train_u[k])
print len(result_all_train_u)/batch_size
index_batch=0
count=1
for index_ in result_all_train_u:
#u,i=dict[index_]
batch_size_u_i.append(result[index_] )
if count%batch_size==0:
temp_data=beatch_train_generator(train_ratings,train_ratings_original,user_count,item_count,batch_size,batch_size_u_i,str(index_batch))
all_result.append(temp_data)
index_batch=index_batch+1
count=0
batch_size_u_i=[]
count=count+1
return all_result
'''
start_time=time.time()
print 'result_all_train start'
all_result_train=one_train_generator(user_ratings,user_ratings_original,user_id_mapping,item_id_mapping,512)
start_time2=time.time()
print 'result_all_train end',start_time2-start_time,len(all_result_train)
'''
def one_test_val_generator(test_or_val_ratings,train_ratings_original,user_count,item_count,batch_size):
all_result=[]
result=dict()
result_count=0
for u in range(user_count):
i =test_or_val_ratings[u]
result[result_count]=[u,i]
result_count=result_count+1
result_count=result_count-1
result_all_train_u=range(result_count)
random.shuffle(result_all_train_u)
batch_size_u_i=[]
add_to_512=batch_size-result_count%batch_size
for k in range(add_to_512):
result_all_train_u.append(result_all_train_u[k])
print len(result_all_train_u)/batch_size
index_batch=0
count=1
for index_ in result_all_train_u:
#u,i=dict[index_]
batch_size_u_i.append(result[index_] )
if count%batch_size==0:
temp_data=beatch_train_generator(test_or_val_ratings,train_ratings_original,user_count,item_count,batch_size,batch_size_u_i,str(index_batch))
all_result.append(temp_data)
index_batch=index_batch+1
count=0
batch_size_u_i=[]
count=count+1
return all_result
'''
start_time=time.time()
print 'result_all_train start'
all_result_test=one_test_val_generator(test_ratings,user_ratings_original,user_id_mapping,item_id_mapping,512)
start_time2=time.time()
print 'result_all_train end',start_time2-start_time
'''
def generate_negative_100(train_ratings_original, user_ratings_test,item_count):
t=[]
for u in train_ratings_original.keys():
i_p=user_ratings_test[u]
temp=[]
rand_200=[random.randint(1, item_count) for _ in range(200)]
for sel_100 in rand_200:
j_ng = sel_100
if not (j_ng in train_ratings_original[u]):
temp.append(j_ng)
t.append([u,i_p,temp])
return t
def Upload_influence_speed(batch_size,u_ups,u_ups_user,user_emb_p,user_emb_q,item_emb_x,item_emb_w,vision_,e_aj_w,e_aj_b,gather_upload):
u_p=(tf.nn.embedding_lookup(user_emb_p, u_ups_user))
u_q=(tf.nn.embedding_lookup(user_emb_q, u_ups_user))
x_up_img=(tf.nn.embedding_lookup(item_emb_x, u_ups))
w_up_img=(tf.nn.embedding_lookup(item_emb_w, u_ups))
x_up=tf.concat([u_p,u_q,x_up_img,w_up_img,vision_],1) #size_up*60
e_aj_temp=tf.nn.elu(tf.matmul(x_up,e_aj_w)+e_aj_b)#(size_up*60 * 60*20)+20=size_up*20
e_aj_temp_sum=(tf.reduce_sum(e_aj_temp,1, keep_dims=True))
e_aj_temp_sum=tf.where(e_aj_temp_sum>88,tf.ones_like(e_aj_temp_sum)*88,e_aj_temp_sum)
e_aj=e_aj_temp_sum#tf.exp(e_aj_temp_sum)+0.001#size_up*1
molecular_e_aj=tf.multiply(e_aj,x_up_img)#size_up*15
denominator_e_aj=e_aj#size_up*1
part_mole=tf.segment_sum(molecular_e_aj,gather_upload)
part_denom=tf.segment_sum(denominator_e_aj,gather_upload)
alpha_all=tf.multiply(part_mole,tf.reciprocal(part_denom))
alpha_all=tf.where(tf.is_nan(alpha_all),tf.ones_like(alpha_all)*0.001,alpha_all)
return alpha_all
def Social_influence_one_cal(batch_size,u_follows,u_follows_user,user_emb_p,user_emb_q,vision_beta_a,vision_beta_b,e_ab_w,e_ab_b,gather_social):
#social influence
follow_pa=(tf.nn.embedding_lookup(user_emb_p, u_follows))
follow_qa=(tf.nn.embedding_lookup(user_emb_q, u_follows))
follow_pb=(tf.nn.embedding_lookup(user_emb_p, u_follows_user))
follow_qb=(tf.nn.embedding_lookup(user_emb_q, u_follows_user))
x_follow=tf.concat([follow_pa,follow_pb,follow_qa,follow_qb,vision_beta_a,vision_beta_b],1) #size_up*60
e_ab_temp=tf.nn.elu(tf.matmul(x_follow,e_ab_w)+e_ab_b)#(size_up*60 * 60*20)+20=size_up*20
e_ab_temp_sum=(tf.reduce_sum(e_ab_temp,1, keep_dims=True))
e_ab_temp_sum=tf.where(e_ab_temp_sum>88,tf.ones_like(e_ab_temp_sum)*88,e_ab_temp_sum)
e_ab=e_ab_temp_sum#tf.exp(e_ab_temp_sum)+0.001#tf.exp((tf.reduce_sum(e_ab_temp,1, keep_dims=True)))#size_up*1
molecular_e_ab=tf.multiply(e_ab,follow_qb)#size_up*15
denominator_e_ab=e_ab#size_up*1
part_mole=tf.segment_sum(molecular_e_ab,gather_social)
part_denom=tf.segment_sum(denominator_e_ab,gather_social)
beta_all=tf.multiply(part_mole,tf.reciprocal(part_denom))
beta_all=tf.where(tf.is_nan(beta_all),tf.ones_like(beta_all)*0.001,beta_all)
return beta_all
def Factor_importance(alpha,beta,u_emb_base,u_emb_external,uploader_influence_i,vision_aspect,h_f_w,h_f_b):
#I_l_a=tf.reshape(I_l_a,[batch_size,1])
f1=tf.concat([alpha,u_emb_base,u_emb_external,vision_aspect],1)
f2=tf.concat([beta,u_emb_base,u_emb_external,vision_aspect],1)
f3=tf.concat([uploader_influence_i,u_emb_base,u_emb_external,vision_aspect],1)
e_a_1_temp=tf.reduce_sum(tf.nn.elu(tf.matmul(f1,h_f_w)+h_f_b))
e_a_1_temp=tf.where(e_a_1_temp>88,tf.ones_like(e_a_1_temp)*88,e_a_1_temp)
e_a_1=e_a_1_temp#tf.exp(e_a_1_temp)+0.001#batch_size*
e_a_2_temp=tf.reduce_sum(tf.nn.elu(tf.matmul(f2,h_f_w)+h_f_b))
e_a_2_temp=tf.where(e_a_2_temp>88,tf.ones_like(e_a_2_temp)*88,e_a_2_temp)
e_a_2=e_a_2_temp#tf.exp(e_a_2_temp)+0.001#batch_size*
e_a_3_temp=tf.reduce_sum(tf.nn.elu(tf.matmul(f3,h_f_w)+h_f_b))
e_a_3_temp=tf.where(e_a_3_temp>88,tf.ones_like(e_a_3_temp)*88,e_a_3_temp)
e_a_3=e_a_3_temp#tf.exp(e_a_3_temp)+0.001#batch_size*
denominator_e_ai=e_a_1+e_a_2+e_a_3#tf.add(tf.add(e_a_1,e_a_2),e_a_3)
gamma_a1= e_a_1/denominator_e_ai#tf.reduce_sum(e_a_1/denominator_e_ai,1, keep_dims=True)
gamma_a2= e_a_2/denominator_e_ai#tf.reduce_sum(e_a_2/denominator_e_ai,1, keep_dims=True)
gamma_a3= e_a_3/denominator_e_ai#tf.reduce_sum(e_a_3/denominator_e_ai,1, keep_dims=True)
return [gamma_a1,gamma_a2,gamma_a3]
user_count = (user_id_mapping)-1
item_count = (item_id_mapping)-1
os.environ["CUDA_VISIBLE_DEVICES"]="1"
with tf.Graph().as_default(), tf.Session() as session:
batch_size = 512
#u, i,i_uploader,I_li_a,j,j_uploader,I_lj_a,u_ups,u_ups_user,u_ups_split,u_follows,u_follows_user,u_follows_split,loss, auc,my_get, train_op,train_ = vbpr(user_count, item_count,batch_size)
#user_count, item_count
hidden_dim=15
hidden_img_dim=15
hidden_dim_upload=20
hidden_dim_social=20
hidden_dim_factor=20
learning_rate = 0.0005
l2_regulization = 0.01
bias_regulization=1.0
u = tf.placeholder(tf.int32, [None])
vision_repre_u_a=tf.placeholder(tf.float32, [None,1808])
vision_repre_u_b=tf.placeholder(tf.float32, [None,1808])
gather_upload=tf.placeholder(tf.int32, [None])
gather_social=tf.placeholder(tf.int32, [None])
i = tf.placeholder(tf.int32, [None])
i_uploader=tf.placeholder(tf.int32, [None])
j = tf.placeholder(tf.int32, [None])
j_uploader=tf.placeholder(tf.int32, [None])
u_ups = tf.placeholder(tf.int32,[None])
u_ups_user = tf.placeholder(tf.int32,[None])
u_ups_split = tf.placeholder(tf.int32,[None])
u_ups_feature=tf.placeholder(tf.float32, [None,1808])
u_follows = tf.placeholder(tf.int32,[None])
u_follows_user = tf.placeholder(tf.int32,[None])
u_follows_split = tf.placeholder(tf.int32,[None])
train_ =tf.placeholder(tf.int32,[None])
user_emb_p= tf.get_variable("user_emb_p", [user_count+1, hidden_dim],
initializer=tf.random_normal_initializer(0, 0.01))
user_emb_q= tf.get_variable("user_emb_q", [user_count+1, hidden_dim],
initializer=tf.random_normal_initializer(0, 0.01))
item_emb_w = tf.get_variable("item_emb_w", [item_count+1, hidden_dim],
initializer=tf.random_normal_initializer(0, 0.01))
item_emb_x = tf.get_variable("item_emb_x", [item_count+1, hidden_dim],
initializer=tf.random_normal_initializer(0, 0.01))
item_b = tf.get_variable("item_b", [item_count+1, 1],
initializer=tf.constant_initializer(0.0))
#upload influence feedforward neural net
e_aj_w=tf.get_variable("e_aj_w", [hidden_dim*5, hidden_dim_upload],
initializer=tf.random_normal_initializer(0, 0.01))
e_aj_b=tf.get_variable("e_aj_b", [hidden_dim_upload],
initializer=tf.constant_initializer(0.0))
#upload influence vision part
e_aj_vision_w=tf.get_variable("e_aj_vision_w", [1808, hidden_dim],
initializer=tf.random_normal_initializer(0, 0.01))
#soclai influence feedforward neural net
e_ab_w=tf.get_variable("e_ab_w", [hidden_dim*6, hidden_dim_social],
initializer=tf.random_normal_initializer(0, 0.01))
e_ab_b=tf.get_variable("e_ab_b", [hidden_dim_social],
initializer=tf.constant_initializer(0.0))
e_ab_vision_w=tf.get_variable("e_ab_vision_w", [1808, hidden_dim],
initializer=tf.random_normal_initializer(0, 0.01))
#factor importance feedforward neural net
h_f_w=tf.get_variable("h_f_w", [hidden_dim, hidden_dim_factor],
initializer=tf.random_normal_initializer(0, 0.01))
h_f_b=tf.get_variable("h_f_b", [hidden_dim_factor],
initializer=tf.constant_initializer(0.0))
h_f_vision_w=tf.get_variable("h_f_vision_w", [1808, hidden_dim],
initializer=tf.random_normal_initializer(0, 0.01))
user_emb_p_1=user_emb_p
user_emb_q_1=user_emb_q
item_emb_w_1=item_emb_w
item_emb_x_1=item_emb_x
item_b_1=item_b
vision_alpha=tf.gather(tf.matmul(vision_repre_u_a,e_aj_vision_w),gather_upload)
alpha=Upload_influence_speed(batch_size,u_ups,u_ups_user,user_emb_p,user_emb_q,item_emb_x,item_emb_w,vision_alpha,e_aj_w,e_aj_b,gather_upload)
#vision_alpha=tf.matmul(u_ups_feature,e_aj_vision_w)
vision_beta_a=tf.gather(tf.matmul(vision_repre_u_a,e_ab_vision_w),gather_social)
vision_beta_b=(tf.matmul(vision_repre_u_b,e_ab_vision_w))
# beta=Social_influence_one_cal(batch_size,u_follows,u_follows_user,u_follows_split,user_emb_p_1,user_emb_q_1,vision_beta_a,vision_beta_b,e_ab_w,e_ab_b)
beta=Social_influence_one_cal(batch_size,u_follows,u_follows_user,user_emb_p_1,user_emb_q_1,vision_beta_a,vision_beta_b,e_ab_w,e_ab_b,gather_social)
#uploader Influence
uploader_influence_i=tf.nn.embedding_lookup(user_emb_q_1, i_uploader)
uploader_influence_j=tf.nn.embedding_lookup(user_emb_q_1, j_uploader)
u_emb_base = tf.nn.embedding_lookup(user_emb_p_1, u)
u_emb_external = tf.nn.embedding_lookup(user_emb_q_1, u)
i_emb_base = tf.nn.embedding_lookup(item_emb_w_1, i)
i_emb_external = tf.nn.embedding_lookup(item_emb_x_1, i)
j_emb_base = tf.nn.embedding_lookup(item_emb_w_1, j)
j_emb_external = tf.nn.embedding_lookup(item_emb_x_1, j)
item_b_i=tf.nn.embedding_lookup(item_b_1, i)
item_b_j=tf.nn.embedding_lookup(item_b_1, j)
e_a_1_temp=tf.reduce_sum((tf.matmul(alpha,h_f_w)+h_f_b))
e_a_1_temp=tf.where(e_a_1_temp>88,tf.ones_like(e_a_1_temp)*88,e_a_1_temp)
e_a_1=tf.exp(e_a_1_temp)+0.001
e_a_2_temp=tf.reduce_sum((tf.matmul(beta,h_f_w)+h_f_b))
e_a_2_temp=tf.where(e_a_2_temp>88,tf.ones_like(e_a_2_temp)*88,e_a_2_temp)
e_a_2=tf.exp(e_a_2_temp)+0.001
e_a_3_temp=tf.reduce_sum((tf.matmul(uploader_influence_i,h_f_w)+h_f_b))
e_a_3_temp=tf.where(e_a_3_temp>88,tf.ones_like(e_a_3_temp)*88,e_a_3_temp)
e_a_3=tf.exp(e_a_3_temp)+0.001
e_a_3_temp_j=tf.reduce_sum((tf.matmul(uploader_influence_j,h_f_w)+h_f_b))
e_a_3_temp_j=tf.where(e_a_3_temp_j>88,tf.ones_like(e_a_3_temp_j)*88,e_a_3_temp_j)
e_a_3_j=tf.exp(e_a_3_temp_j)+0.001
denominator_e_ai=e_a_1+e_a_2+e_a_3#tf.add(tf.add(e_a_1,e_a_2),e_a_3)
gamma_a1_i= e_a_1/denominator_e_ai#tf.reduce_sum(e_a_1/denominator_e_ai,1, keep_dims=True)
gamma_a2_i= e_a_2/denominator_e_ai#tf.reduce_sum(e_a_2/denominator_e_ai,1, keep_dims=True)
gamma_a3_i= e_a_3/denominator_e_ai#tf.reduce_sum(e_a_3/denominator_e_ai,1, keep_dims=True)
denominator_e_ai=e_a_1+e_a_2+e_a_3_j#tf.add(tf.add(e_a_1,e_a_2),e_a_3)
gamma_a1_j= e_a_1/denominator_e_ai#tf.reduce_sum(e_a_1/denominator_e_ai,1, keep_dims=True)
gamma_a2_j= e_a_2/denominator_e_ai#tf.reduce_sum(e_a_2/denominator_e_ai,1, keep_dims=True)
gamma_a3_j= e_a_3_j/denominator_e_ai#tf.reduce_sum(e_a_3/denominator_e_ai,1, keep_dims=True)
R_ai_temp=(u_emb_base+gamma_a1_i*alpha+gamma_a2_i*beta+gamma_a3_i*uploader_influence_i)
R_ai= tf.diag_part(tf.matmul(R_ai_temp,tf.transpose(i_emb_base)))
R_aj_temp=(u_emb_base+gamma_a1_j*alpha+gamma_a2_j*beta+gamma_a3_j*uploader_influence_j)
R_aj= tf.diag_part(tf.matmul(R_aj_temp,tf.transpose(j_emb_base)))
x= item_b_i-item_b_j+tf.add(R_ai,-R_aj)
#auc=tf.Variable(0)
auc =[user_emb_p_1,user_emb_q_1,item_emb_w_1,item_emb_x_1,item_b_1,e_aj_w,e_aj_b,e_aj_vision_w,e_ab_w,e_ab_b,e_ab_vision_w,h_f_w,h_f_b,h_f_vision_w]#tf.reduce_mean(tf.to_float(x > 0))
my_get=[alpha,beta,uploader_influence_i,uploader_influence_j,\
R_ai,R_aj,item_b_i,item_b_j,R_ai_temp,i_emb_base,R_aj_temp,j_emb_base,u_emb_base,\
gamma_a1_i,gamma_a2_i,gamma_a3_i,gamma_a1_j,gamma_a2_j,gamma_a3_j]#,\
#u,i,j,alpha_all,molecular_e_aj,denominator_e_aj,split_index_up]#[alpha,x_up,e_aj_temp,e_aj,molecular_e_aj,denominator_e_aj]#[x,tf.sigmoid(x),tf.log(1+tf.sigmoid(x)),alpha,u_emb_base]
loss=-tf.reduce_mean(tf.log(tf.sigmoid(0.1*x)))
learning_rate_get =tf.cond((tf.count_nonzero(train_))>=2, lambda:learning_rate,lambda:0.0)
train_op=tf.train.AdamOptimizer(learning_rate_get).minimize(loss)
session.run(tf.global_variables_initializer())
saver = tf.train.Saver([user_emb_p,item_emb_w,item_b])#,e_aj_w,e_aj_b])
saver.restore(session, '../bpr_model/mymodel199.ckpt')
for epoch in range(1, 130):
Path_vbpr_train='./results_my_elu_exp_0.0001r/mymodel_train_result_all.txt'
wfile_vbpr_train=open(Path_vbpr_train,'a')
if epoch==1:
wfile_vbpr_train.write('\n+mymodel +199bpr model+ 0.1*x')
print "epoch:", epoch
_loss_train = 0.0
temp_count=0
time_start=time.time()
laster_loss=0.0
time_start=time.time()
count =0
#train_batch=train_batch_generator_all(result_all_train,result_all_train_u,result_train_count, batch_size)
time_start1=time.time()
train_batch=one_train_generator(user_ratings,user_ratings_original,user_id_mapping,item_id_mapping,batch_size)
sample_count =len(train_batch)
time_start2=time.time()
print time_start2-time_start1
flag=1
#train_batch_generator(result_all_train,result_train_count, sample_count, batch_size)
for d,gather_upload_,gather_social_,vision_repre_a_,vision_repre_b_,up_,up_user,up_split,up_feature,follow_,follow_user,follow_split in train_batch:
#pdb.set_trace()
# print len(gather_upload_),len(gather_social_)
#time_start3=time.time()
#break
vision_repre_b_end=[]
for i_f in vision_repre_b_:
for j_f in i_f:
vision_repre_b_end.append(j_f)
up_feature_end=[]
for i_f in up_feature:
for j_f in i_f:
up_feature_end.append(j_f)
up_end=[]
for i_up in up_:
for j_up in i_up:
up_end.append(j_up)
up_user_end=[]
for i_up_u in up_user:
for j_up_u in i_up_u:
up_user_end.append(j_up_u)
follow_user_end=[]
for i_follow_u in follow_user:
for j_follow_u in i_follow_u:
follow_user_end.append(j_follow_u)
follow_end=[]
for i_follow in follow_:
for j_follow in i_follow:
follow_end.append(j_follow)
if flag==1:
time_start4=time.time()
_loss, _ ,auc_,get_= session.run([loss, train_op,auc,my_get], feed_dict={
u:d[:,0],gather_upload:gather_upload_,gather_social:gather_social_, vision_repre_u_a:vision_repre_a_, vision_repre_u_b:vision_repre_b_end,\
i:d[:,1],i_uploader:d[:,2],j:d[:,3], j_uploader:d[:,4],\
u_ups:up_end,u_ups_user:up_user_end,u_ups_split:up_split,u_ups_feature:up_feature_end,u_follows:follow_end,\
u_follows_user:follow_user_end,u_follows_split:follow_split,train_:[1,2,3]
})
count=count+1
_loss_train += _loss
laster_loss=_loss
temp_count=temp_count+1
if flag==1:
time_start5=time.time()
print 'time:',time_start5-time_start4,#,time_start4-time_start3
#print _loss,
#pdb.set_trace()
#exit()
if flag==1:
print _loss
flag=0
if math.isnan(_loss):
print count-1
pdb.set_trace()
exit()
#break
train_loss=round(_loss_train/sample_count,4)
time_end=time.time()
cost_time=round(time_end-time_start,4)
print cost_time,train_loss
#if epoch>1:
# load_test('./my_model/mymodel'+str(epoch-1)+'.ckpt',train_batch,sample_count,user_count, item_count,batch_size)
wfile_vbpr_train.write('\nepoch:'+str(epoch)+',\tCompute Loss Cost:'+str(cost_time)+'s, ')
wfile_vbpr_train.write('Train_loss:'+str(train_loss)+', ')
count=0
NDCG_test=[0]*51
hint_test=[0]*51
NDCG_val=[0]*51
hint_val=[0]*51
_loss_val = 0.0
_loss_test = 0.0
sum_coun=user_count
all_result_val=one_test_val_generator(val_ratings,user_ratings_original,user_id_mapping,item_id_mapping,batch_size)
sample_count =len(all_result_val)
#pdb.set_trace()
for d,gather_upload_,gather_social_,vision_repre_a_,vision_repre_b_,up_,up_user,up_split,up_feature,follow_,follow_user,follow_split in all_result_val:# train_batch_generator_all(result_all_val,result_all_val_u,result_val_count, batch_size):
# train_batch_generator(result_all_val,result_val_count, sample_count, batch_size):
#break
vision_repre_b_end=[]
for i_f in vision_repre_b_:
for j_f in i_f:
vision_repre_b_end.append(j_f)
up_feature_end=[]
for i_f in up_feature:
for j_f in i_f:
up_feature_end.append(j_f)
up_end=[]
for i_up in up_:
for j_up in i_up:
up_end.append(j_up)
up_user_end=[]
for i_up_u in up_user:
for j_up_u in i_up_u:
up_user_end.append(j_up_u)
follow_user_end=[]
for i_follow_u in follow_user:
for j_follow_u in i_follow_u:
follow_user_end.append(j_follow_u)
follow_end=[]
for i_follow in follow_:
for j_follow in i_follow:
follow_end.append(j_follow)
#time_start4=time.time()
_loss,val_auc= session.run([loss,auc], feed_dict={
u:d[:,0],gather_upload:gather_upload_,gather_social:gather_social_, vision_repre_u_a:vision_repre_a_, vision_repre_u_b:vision_repre_b_end,\
i:d[:,1],i_uploader:d[:,2],j:d[:,3], j_uploader:d[:,4],\
u_ups:up_end,u_ups_user:up_user_end,u_ups_split:up_split,u_ups_feature:up_feature_end,u_follows:follow_end,\
u_follows_user:follow_user_end,u_follows_split:follow_split,train_:[0,0,0]
})
_loss_val += _loss
#print _loss
#break
saver = tf.train.Saver()
print 'saver'
saver.save(session, './results_my_elu_exp_0.0001r/my_model_elu_exp/mymodel'+str(epoch)+'.ckpt')
print 'saver end'
#if epoch%5!=1:
#continue
all_result_test=one_test_val_generator(test_ratings,user_ratings_original,user_id_mapping,item_id_mapping,batch_size)
sample_count =len(all_result_test)
for d,gather_upload_,gather_social_,vision_repre_a_,vision_repre_b_,up_,up_user,up_split,up_feature,follow_,follow_user,follow_split in all_result_test:#train_batch_generator_all(result_all_test,result_all_test_u,result_test_count, batch_size):
#train_batch_generator(result_all_test,result_test_count, sample_count, batch_size):
vision_repre_b_end=[]
for i_f in vision_repre_b_:
for j_f in i_f:
vision_repre_b_end.append(j_f)
up_feature_end=[]
for i_f in up_feature:
for j_f in i_f:
up_feature_end.append(j_f)
up_end=[]
for i_up in up_:
for j_up in i_up:
up_end.append(j_up)
up_user_end=[]
for i_up_u in up_user:
for j_up_u in i_up_u:
up_user_end.append(j_up_u)
follow_user_end=[]
for i_follow_u in follow_user:
for j_follow_u in i_follow_u:
follow_user_end.append(j_follow_u)
follow_end=[]
for i_follow in follow_:
for j_follow in i_follow:
follow_end.append(j_follow)
#time_start4=time.time()
test_loss,test_auc= session.run([loss,auc], feed_dict={
u:d[:,0],gather_upload:gather_upload_,gather_social:gather_social_, vision_repre_u_a:vision_repre_a_, vision_repre_u_b:vision_repre_b_end,\
i:d[:,1],i_uploader:d[:,2],j:d[:,3], j_uploader:d[:,4],\
u_ups:up_end,u_ups_user:up_user_end,u_ups_split:up_split,u_ups_feature:up_feature_end,u_follows:follow_end,\
u_follows_user:follow_user_end,u_follows_split:follow_split,train_:[0,0,0]
})
auc_get=test_auc
_loss_test += test_loss
#break
#break
val_loss=round(_loss_val/sample_count,4)
print 'val_loss',val_loss
wfile_vbpr_train.write('Val Loss:'+str(val_loss)+', ')
test_loss=round(_loss_test/sample_count,4)
print 'test_loss',test_loss
wfile_vbpr_train.write('Test Loss:'+str(test_loss)+'\n')
[user_emb_p_1,user_emb_q_1,item_emb_w_1,item_emb_x_1,item_b_1,e_aj_w_1,e_aj_b_1,e_aj_vision_w_1,e_ab_w_1,e_ab_b_1,e_ab_vision_w_1,h_f_w_1,h_f_b_1,h_f_vision_w_1]=auc_get
i_j_100_val=generate_negative_100(user_ratings_original, val_ratings,item_count)
for user_id in range (0,sum_coun):
user_sel=i_j_100_val[user_id][0]
i_id=i_j_100_val[user_id][1]
#print user_sel,i_id
molecular_e_aj=[0.0,0.0,0.0,0.0,0.0,0,0,0,0,0,0,0,0,0,0]
denominator_e_aj=0.0
user_sel_list=[]
user_sel_feature=[]
user_sel_feature1=[]
for i_usersel in range(0,len(user_ups[user_sel])):
user_sel_list.append(user_sel)
#user_sel_feature=np.concatenate((user_sel_feature,img_feature[i_usersel]),0)
user_sel_feature1.append(vision_repre[user_sel])
#temp=np.take(user_emb_p,user_sel_list,0)
#print temp
#pdb.set_trace()
vision_user_up=np.matmul(user_sel_feature1,e_aj_vision_w_1)
#vision_user_up=np.matmul(user_sel_feature1,e_aj_vision_w_1)
x_up2=np.concatenate([np.take(user_emb_p_1,user_sel_list,0),np.take(user_emb_q_1,user_sel_list,0),\
np.take(item_emb_x_1,user_ups[user_sel],0),np.take(item_emb_w_1,user_ups[user_sel],0),vision_user_up],1)
e_aj_temp2=(numpy.dot(x_up2,e_aj_w_1)+e_aj_b_1)
e_aj2=np.exp(np.sum(e_aj_temp2,1))+0.001
alpha= np.matmul((e_aj2).T,(np.take(item_emb_x_1,user_ups[user_sel],0)))/np.sum(e_aj2)
user_sel_list=[]
user_sel_feature_a=[]
user_sel_feature_b=[]
for i_usersel in range(0,len(user_follows[user_sel])):
user_sel_list.append(user_sel)
user_sel_feature_a.append(vision_repre[user_sel])
user_sel_feature_b.append(vision_repre[i_usersel])
vision_user_social_a=np.matmul(user_sel_feature_a,e_ab_vision_w_1)
vision_user_social_b=np.matmul(user_sel_feature_b,e_ab_vision_w_1)
#u_vision_f_all
x_follow2=np.concatenate([np.take(user_emb_p_1,user_sel_list,0),np.take(user_emb_p_1,user_follows[user_sel],0),\
np.take(user_emb_q_1,user_sel_list,0),np.take(user_emb_q_1,user_follows[user_sel],0),vision_user_social_a,vision_user_social_b],1)
e_ab_temp2=(numpy.dot(x_follow2,e_ab_w_1)+e_ab_b_1)
e_ab2=np.exp(np.sum(e_ab_temp2,1))+0.001
beta= np.matmul((e_ab2).T,(np.take(user_emb_q_1,user_follows[user_sel],0)))/np.sum(e_ab2)
u_emb_base=user_emb_p_1[user_sel]
u_emb_external=user_emb_q_1[user_sel]
vision_user_ql=np.matmul(vision_repre[user_sel],h_f_vision_w_1)
uploader_influence_i=user_emb_q_1[ups_user[i_id]]
e_a_1=np.exp(np.sum((numpy.dot(alpha,h_f_w_1)+h_f_b_1)))+0.01
e_a_2=np.exp(np.sum((numpy.dot(beta,h_f_w_1)+h_f_b_1)))+0.01 #tf.exp(np.sum(tf.nn.relu(tf.matmul(f2,h_f_w)+h_f_b)))
e_a_3=np.exp(np.sum((numpy.dot(uploader_influence_i,h_f_w_1)+h_f_b_1)))+0.01 #tf.exp(np.sum(tf.nn.relu(tf.matmul(f3,h_f_w)+h_f_b)))
denominator_e_ai=e_a_1+e_a_2+e_a_3
gamma_a1= e_a_1/denominator_e_ai
gamma_a2= e_a_2/denominator_e_ai
gamma_a3= e_a_3/denominator_e_ai
user_i_temp=(u_emb_base+gamma_a1*alpha+gamma_a2*beta+gamma_a3*uploader_influence_i)
#u_emb_base+0.5*alpha+0.5*beta#
user_i=item_b_1[i_id]+np.dot(user_i_temp,(item_emb_w_1[i_id]).T)
idx_=1
negative100=i_j_100_val[user_id][2]
#time2=time.time()
for sel_100 in range(0,100):
j_ng = negative100[sel_100]
uploader_influence_i=user_emb_q_1[ups_user[j_ng]]
e_a_1=np.exp(np.sum((numpy.dot(alpha,h_f_w_1)+h_f_b_1)))+0.01
e_a_2=np.exp(np.sum((numpy.dot(beta,h_f_w_1)+h_f_b_1)))+0.01 #tf.exp(np.sum(tf.nn.relu(tf.matmul(f2,h_f_w)+h_f_b)))
e_a_3=np.exp(np.sum((numpy.dot(uploader_influence_i,h_f_w_1)+h_f_b_1)))+0.01 #tf.exp(np.sum(tf.nn.relu(tf.matmul(f3,h_f_w)+h_f_b)))
denominator_e_ai=e_a_1+e_a_2+e_a_3
gamma_a1= e_a_1/denominator_e_ai
gamma_a2= e_a_2/denominator_e_ai
gamma_a3= e_a_3/denominator_e_ai
user_j_temp=(u_emb_base+gamma_a1*alpha+gamma_a2*beta+gamma_a3*uploader_influence_i)
#u_emb_base+0.5*alpha+0.5*beta#
user_j=item_b_1[j_ng]+np.dot(user_j_temp,(item_emb_w_1[j_ng]).T)
#user_j=item_b[j_ng]+user_item_[user_sel,j_ng]+numpy.dot(numpy.transpose(user_img_w[user_sel]),img_feature[j_ng])+img_feature_b[j_ng]#(,(numpy.dot(image_features[j_ng],img_emb_w)))
if user_j>user_i:
idx_=idx_+1
#time3=time.time()
if idx_<=50:
NDCG_val[idx_]=NDCG_val[idx_]+(math.log(2))/math.log(idx_+1)
hint_val[idx_]=hint_val[idx_]+1
i_j_100_val=generate_negative_100(user_ratings_original, test_ratings,item_count)
g1_all=[]
g2_all=[]
g3_all=[]
for user_id in range (0,sum_coun):
user_sel=i_j_100_val[user_id][0]
i_id=i_j_100_val[user_id][1]
#print user_sel,i_id
molecular_e_aj=[0.0,0.0,0.0,0.0,0.0,0,0,0,0,0,0,0,0,0,0]
denominator_e_aj=0.0
user_sel_list=[]
user_sel_feature=[]
user_sel_feature1=[]
for i_usersel in range(0,len(user_ups[user_sel])):
user_sel_list.append(user_sel)
#user_sel_feature=np.concatenate((user_sel_feature,img_feature[i_usersel]),0)
user_sel_feature1.append(vision_repre[user_sel])
#temp=np.take(user_emb_p,user_sel_list,0)
#print temp
#pdb.set_trace()
vision_user_up=np.matmul(user_sel_feature1,e_aj_vision_w_1)
#vision_user_up=np.matmul(user_sel_feature1,e_aj_vision_w_1)
x_up2=np.concatenate([np.take(user_emb_p_1,user_sel_list,0),np.take(user_emb_q_1,user_sel_list,0),\
np.take(item_emb_x_1,user_ups[user_sel],0),np.take(item_emb_w_1,user_ups[user_sel],0),vision_user_up],1)
e_aj_temp2=(numpy.dot(x_up2,e_aj_w_1)+e_aj_b_1)
e_aj2=np.exp(np.sum(e_aj_temp2,1))+0.001
alpha= np.matmul((e_aj2).T,(np.take(item_emb_x_1,user_ups[user_sel],0)))/np.sum(e_aj2)
user_sel_list=[]
user_sel_feature_a=[]
user_sel_feature_b=[]
for i_usersel in range(0,len(user_follows[user_sel])):
user_sel_list.append(user_sel)
user_sel_feature_a.append(vision_repre[user_sel])
user_sel_feature_b.append(vision_repre[i_usersel])
vision_user_social_a=np.matmul(user_sel_feature_a,e_ab_vision_w_1)
vision_user_social_b=np.matmul(user_sel_feature_b,e_ab_vision_w_1)
#u_vision_f_all
x_follow2=np.concatenate([np.take(user_emb_p_1,user_sel_list,0),np.take(user_emb_p_1,user_follows[user_sel],0),\
np.take(user_emb_q_1,user_sel_list,0),np.take(user_emb_q_1,user_follows[user_sel],0),vision_user_social_a,vision_user_social_b],1)
e_ab_temp2=(numpy.dot(x_follow2,e_ab_w_1)+e_ab_b_1)
e_ab2=np.exp(np.sum(e_ab_temp2,1))+0.001
beta= np.matmul((e_ab2).T,(np.take(user_emb_q_1,user_follows[user_sel],0)))/np.sum(e_ab2)
u_emb_base=user_emb_p_1[user_sel]
u_emb_external=user_emb_q_1[user_sel]
vision_user_ql=np.matmul(vision_repre[user_sel],h_f_vision_w_1)
uploader_influence_i=user_emb_q_1[ups_user[i_id]]
e_a_1=np.exp(np.sum((numpy.dot(alpha,h_f_w_1)+h_f_b_1)))+0.01
e_a_2=np.exp(np.sum((numpy.dot(beta,h_f_w_1)+h_f_b_1)))+0.01 #tf.exp(np.sum(tf.nn.relu(tf.matmul(f2,h_f_w)+h_f_b)))
e_a_3=np.exp(np.sum((numpy.dot(uploader_influence_i,h_f_w_1)+h_f_b_1)))+0.01 #tf.exp(np.sum(tf.nn.relu(tf.matmul(f3,h_f_w)+h_f_b)))
denominator_e_ai=e_a_1+e_a_2+e_a_3
gamma_a1= e_a_1/denominator_e_ai
gamma_a2= e_a_2/denominator_e_ai
gamma_a3= e_a_3/denominator_e_ai
g1_all.append(gamma_a1)
g2_all.append(gamma_a2)
g3_all.append(gamma_a3)
user_i_temp=(u_emb_base+gamma_a1*alpha+gamma_a2*beta+gamma_a3*uploader_influence_i)
#u_emb_base+0.5*alpha+0.5*beta#
user_i=item_b_1[i_id]+np.dot(user_i_temp,(item_emb_w_1[i_id]).T)
idx_=1
negative100=i_j_100_val[user_id][2]
#time2=time.time()
for sel_100 in range(0,100):
j_ng = negative100[sel_100]
uploader_influence_i=user_emb_q_1[ups_user[j_ng]]
e_a_1=np.exp(np.sum((numpy.dot(alpha,h_f_w_1)+h_f_b_1)))+0.01
e_a_2=np.exp(np.sum((numpy.dot(beta,h_f_w_1)+h_f_b_1)))+0.01 #tf.exp(np.sum(tf.nn.relu(tf.matmul(f2,h_f_w)+h_f_b)))
e_a_3=np.exp(np.sum((numpy.dot(uploader_influence_i,h_f_w_1)+h_f_b_1)))+0.01 #tf.exp(np.sum(tf.nn.relu(tf.matmul(f3,h_f_w)+h_f_b)))
denominator_e_ai=e_a_1+e_a_2+e_a_3
gamma_a1= e_a_1/denominator_e_ai
gamma_a2= e_a_2/denominator_e_ai
gamma_a3= e_a_3/denominator_e_ai
user_j_temp=(u_emb_base+gamma_a1*alpha+gamma_a2*beta+gamma_a3*uploader_influence_i)
#u_emb_base+0.5*alpha+0.5*beta#
user_j=item_b_1[j_ng]+np.dot(user_j_temp,(item_emb_w_1[j_ng]).T)
#user_j=item_b[j_ng]+user_item_[user_sel,j_ng]+numpy.dot(numpy.transpose(user_img_w[user_sel]),img_feature[j_ng])+img_feature_b[j_ng]#(,(numpy.dot(image_features[j_ng],img_emb_w)))
if user_j>user_i:
idx_=idx_+1
if idx_<=50:
NDCG_test[idx_]=NDCG_test[idx_]+(math.log(2))/math.log(idx_+1)
hint_test[idx_]=hint_test[idx_]+1
print 'g1:',np.average(g1_all),np.std(g1_all),
print 'g2:',np.average(g2_all),np.std(g2_all),
print 'g3:',np.average(g3_all),np.std(g3_all)
save_id=[1,2,3,4,5,6,7,8,9,10,15,20,25,30]
Path_vbpr_val_wule='./results_my_elu_exp_0.0001r/mymodel_val_top30.txt'
wfile_vbpr_val_wule=open(Path_vbpr_val_wule,'a')
Path_vbpr_val='./results_my_elu_exp_0.0001r/mymodel_val_top50.txt'
wfile_vbpr_val=open(Path_vbpr_val,'a')
wfile_vbpr_train.write('Validation,\tHIT: ')
wfile_vbpr_val.write('epoch:'+str(epoch)+' val Hit_ratio:\n')
wfile_vbpr_val_wule.write('epoch:'+str(epoch)+' val Hit_ratio:\n')
temp_hint=0
for d_i in range(1,51):
temp_hint=temp_hint+hint_val[d_i]
mean_temp_hint=round(temp_hint*1.0/sum_coun,4)
wfile_vbpr_val.write('top'+str(d_i)+':'+str(temp_hint)+' '+ str(mean_temp_hint)+'\n')
if d_i==5:
wfile_vbpr_train.write('top5:'+str(mean_temp_hint)+'\t')
if d_i==10:
wfile_vbpr_train.write('top10:'+str(mean_temp_hint)+'\t')
if d_i in save_id:
wfile_vbpr_val_wule.write('top'+str(d_i)+':'+str(mean_temp_hint)+' ')
wfile_vbpr_val_wule.write('\n')
wfile_vbpr_train.write('NDCG: ')
wfile_vbpr_val.write('epoch:'+str(epoch)+' val NDCG:\n')
wfile_vbpr_val_wule.write('epoch:'+str(epoch)+' val NDCG:\n')
temp_ndcg=0
for d_i in range(1,51):
temp_ndcg=temp_ndcg+NDCG_val[d_i]
mean_temp_ndcg=round(temp_ndcg/sum_coun,4)
wfile_vbpr_val.write('top'+str(d_i)+':'+str(temp_ndcg)+' '+ str(mean_temp_ndcg)+'\n')
if d_i==5:
wfile_vbpr_train.write('top5:'+str(mean_temp_ndcg)+'\t')
if d_i==10:
wfile_vbpr_train.write('top10:'+str(mean_temp_ndcg)+';\t')
if d_i in save_id:
wfile_vbpr_val_wule.write('top'+str(d_i)+':'+str(mean_temp_ndcg)+' ')
wfile_vbpr_val_wule.write('\n')
wfile_vbpr_train.write('\n')
wfile_vbpr_val.write('\n')
wfile_vbpr_val_wule.write('\n')
wfile_vbpr_val.close()
wfile_vbpr_val_wule.close()
Path_vbpr_test_wule='./results_my_elu_exp_0.0001r/mymodel_test_top30.txt'
wfile_vbpr_test_wule=open(Path_vbpr_test_wule,'a')
Path_vbpr_test='./results_my_elu_exp_0.0001r/mymodel_test_top50.txt'
wfile_vbpr_test=open(Path_vbpr_test,'a')
wfile_vbpr_train.write('TEST,\t\tHIT: ')
wfile_vbpr_test.write('epoch:'+str(epoch)+'test Hit_ratio:\n')
wfile_vbpr_test_wule.write('epoch:'+str(epoch)+'test Hit_ratio:\n')
temp_hint=0
for d_i in range(1,51):
temp_hint=temp_hint+hint_test[d_i]
mean_temp_hint=round(temp_hint*1.0/sum_coun,4)
wfile_vbpr_test.write('top'+str(d_i)+':'+str(temp_hint)+' '+ str(mean_temp_hint)+'\n')
if d_i==5:
wfile_vbpr_train.write('top5:'+str(mean_temp_hint)+'\t')
if d_i==10:
wfile_vbpr_train.write('top10:'+str(mean_temp_hint)+'\t')
if d_i in save_id:
wfile_vbpr_test_wule.write('top'+str(d_i)+':'+str(mean_temp_hint)+' ')
wfile_vbpr_test_wule.write('\n')
wfile_vbpr_train.write('NDCG: ')
wfile_vbpr_test.write('epoch:'+str(epoch)+' test NDCG:\n')
wfile_vbpr_test_wule.write('epoch:'+str(epoch)+' test NDCG:\n')
temp_ndcg=0
for d_i in range(1,51):
temp_ndcg=temp_ndcg+NDCG_test[d_i]
mean_temp_ndcg=round(temp_ndcg/sum_coun,4)
wfile_vbpr_test.write('top'+str(d_i)+':'+str(temp_ndcg)+' '+ str(mean_temp_ndcg)+'\n')
if d_i==5:
wfile_vbpr_train.write('top5:'+str(mean_temp_ndcg)+'\t')
if d_i==10:
wfile_vbpr_train.write('top10:'+str(mean_temp_ndcg)+'\n')
if d_i in save_id:
wfile_vbpr_test_wule.write('top'+str(d_i)+':'+str(mean_temp_ndcg)+' ')
wfile_vbpr_test_wule.write('\n')
wfile_vbpr_test.write('\n')
wfile_vbpr_test_wule.write('\n')
wfile_vbpr_test.close()
wfile_vbpr_test_wule.close()
wfile_vbpr_train.close()