Skip to content

Latest commit

 

History

History
62 lines (35 loc) · 1.93 KB

SIDD.md

File metadata and controls

62 lines (35 loc) · 1.93 KB

reproduce the SIDD dataset results

1. Data Preparation

  • prepare data

    • mkdir ./datasets/SIDD
Download the train set and place it in ./datasets/SIDD/Data:
  • google drive or 百度网盘,

  • python scripts/data_preparation/sidd.py to crop the train image pairs to 512x512 patches and make the data into lmdb format.

    • it should be like:
      ./datasets/SIDD/Data
      ./datasets/SIDD/train
      ./datasets/SIDD/val
      ./datasets/SIDD/test
      ./datasets/SIDD/test/ValidationNoisyBlocksSrgb.mat
      ./datasets/SIDD/test/ValidationGtBlocksSrgb.mat
  • python scripts/data_preparation/sidd.py

  • to crop the train image pairs to 512x512 patches and make the data into lmdb format.

Download the evaluation data (in lmdb format) and place it in ./datasets/SIDD/val/:
  • google drive or 百度网盘,
  • it should be like ./datasets/SIDD/val/input_crops.lmdb and ./datasets/SIDD/val/gt_crops.lmdb

2. Training

  • Your model:

    python -m torch.distributed.launch --nproc_per_node=8 --master_port=4321 basicsr/train.py -opt options/train/SIDD/xxxx.yml --launcher pytorch
    
  • 8 gpus by default. Set --nproc_per_node to # of gpus for distributed validation.

3. Evaluation

Save your pretrain model weight in ./experiments/pretrained_models/
Testing on SIDD dataset
  • Your model:
python -m torch.distributed.launch --nproc_per_node=1 --master_port=4321 basicsr/test.py -opt ./options/test/SIDD/xxx.yml --launcher pytorch
  • Test by a single gpu by default. Set --nproc_per_node to # of gpus for distributed validation.