-
Notifications
You must be signed in to change notification settings - Fork 12
/
Vect.v
1534 lines (1321 loc) · 46.3 KB
/
Vect.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(*! Utilities | Vectors and bitvector library !*)
Require Import Coq.Lists.List Coq.Bool.Bool.
Require Import Coq.micromega.Lia.
Require Import Coq.Arith.Arith.
Require Export Coq.NArith.NArith. (* Coq bug: If this isn't exported, other files can't import Vect.vo *)
Require Import Coq.ZArith.ZArith.
Require Import Koika.EqDec.
Import EqNotations.
Inductive index' {A} := thisone | anotherone (a: A).
Arguments index': clear implicits.
Fixpoint index n : Type :=
match n with
| 0 => False
| S n => index' (index n)
end.
Fixpoint index_of_nat (sz n: nat) : option (index sz) :=
match sz with
| 0 => None
| S sz =>
match n with
| 0 => Some thisone
| S n => match (index_of_nat sz n) with
| Some idx => Some (anotherone idx)
| None => None
end
end
end.
Fixpoint index_to_nat {sz} (idx: index sz) {struct sz} : nat :=
match sz return index sz -> nat with
| 0 => fun idx => False_rect _ idx
| S sz => fun idx => match idx with
| thisone => 0
| anotherone idx => S (index_to_nat idx)
end
end idx.
Definition index_cast n n' (eq: n = n') (idx: index n) : index n' :=
rew eq in idx.
Lemma index_to_nat_injective {n: nat}:
forall x y : index n,
index_to_nat x = index_to_nat y ->
x = y.
Proof.
induction n; destruct x, y; cbn; inversion 1.
- reflexivity.
- f_equal; eauto.
Qed.
Lemma index_to_nat_bounded {sz}:
forall (idx: index sz), index_to_nat idx < sz.
Proof.
induction sz; cbn; destruct idx; auto with arith.
Qed.
Lemma index_of_nat_bounded {sz n}:
n < sz -> exists idx, index_of_nat sz n = Some idx.
Proof.
revert n; induction sz; destruct n; cbn; try solve [inversion 1].
- eauto.
- intros Hlt.
destruct (IHsz n ltac:(auto with arith)) as [ idx0 Heq ].
eexists; rewrite Heq; reflexivity.
Qed.
Lemma index_to_nat_of_nat {sz}:
forall n (idx: index sz),
index_of_nat sz n = Some idx ->
index_to_nat idx = n.
Proof.
induction sz; cbn.
- destruct idx.
- destruct n.
+ inversion 1; reflexivity.
+ intros idx Heq.
destruct (index_of_nat sz n) eqn:?; try discriminate.
inversion Heq; erewrite IHsz; eauto.
Qed.
Lemma index_of_nat_to_nat {sz}:
forall (idx: index sz),
index_of_nat sz (index_to_nat idx) = Some idx.
Proof.
induction sz; cbn; destruct idx.
- reflexivity.
- rewrite IHsz; reflexivity.
Qed.
Lemma index_of_nat_none_ge :
forall sz n,
index_of_nat sz n = None ->
n >= sz.
Proof.
intros; destruct (ge_dec n sz) as [ ? | Hle ].
- eassumption.
- apply not_ge, index_of_nat_bounded in Hle; destruct Hle;
congruence.
Qed.
Lemma index_of_nat_ge_none :
forall sz n,
n >= sz ->
index_of_nat sz n = None.
Proof.
induction sz; cbn; intros.
- reflexivity.
- destruct n.
+ lia.
+ rewrite IHsz by lia; reflexivity.
Qed.
Definition index_of_nat_lt (sz n: nat)
: n < sz -> index sz.
Proof.
destruct (index_of_nat sz n) as [idx | ] eqn:Heq; intros Hlt.
- exact idx.
- exfalso; apply index_of_nat_none_ge in Heq; lia.
Defined.
Fixpoint largest_index sz : index (S sz) :=
match sz with
| 0 => thisone
| S sz => anotherone (largest_index sz)
end.
Lemma index_of_nat_largest sz :
index_of_nat (S sz) sz = Some (largest_index sz).
Proof.
induction sz; cbn.
- reflexivity.
- destruct sz; cbn in *.
+ reflexivity.
+ rewrite IHsz.
reflexivity.
Qed.
Local Set Primitive Projections.
Inductive vect_nil_t {T: Type} := _vect_nil.
Record vect_cons_t {A B: Type} := _vect_cons { vhd: A; vtl: B }.
Arguments vect_nil_t : clear implicits.
Arguments vect_cons_t : clear implicits.
Arguments _vect_cons {A B} vhd vtl : assert.
Fixpoint vect T n : Type :=
match n with
| 0 => vect_nil_t T
| S n => vect_cons_t T (@vect T n)
end.
Definition vect_hd {T n} (v: vect T (S n)) : T :=
v.(vhd).
Definition vect_hd_default {T n} (t: T) (v: vect T n) : T :=
match n return vect T n -> T with
| 0 => fun _ => t
| S n => fun v => vect_hd v
end v.
Definition vect_tl {T n} (v: vect T (S n)) : vect T n :=
v.(vtl).
Definition vect_nil {T} : vect T 0 := _vect_nil.
Definition vect_cons {T n} (t: T) (v: vect T n) : vect T (S n) :=
{| vhd := t; vtl := v |}.
Lemma vect_cons_hd_tl {T sz}:
forall (v: vect T (S sz)),
vect_cons (vect_hd v) (vect_tl v) = v.
Proof.
unfold vect_hd, vect_tl.
reflexivity.
Qed.
Fixpoint vect_const {T} sz (t: T) : vect T sz :=
match sz with
| 0 => vect_nil
| S sz => vect_cons t (vect_const sz t)
end.
Fixpoint vect_app {T} {sz1 sz2} (v1: vect T sz1) (v2: vect T sz2) {struct sz1} : vect T (sz1 + sz2) :=
match sz1 as n return (vect T n -> vect T (n + sz2)) with
| 0 => fun _ => v2
| S sz1 => fun v1 => vect_cons (vect_hd v1) (vect_app (vect_tl v1) v2)
end v1.
Fixpoint vect_app_nil_cast n:
n = n + 0.
Proof. destruct n; cbn; auto. Defined.
Lemma vect_app_nil :
forall {T sz} (v: vect T sz) (v0: vect T 0),
vect_app v v0 =
rew (vect_app_nil_cast _) in v.
Proof.
destruct v0.
induction sz; destruct v; cbn.
- reflexivity.
- rewrite IHsz.
unfold f_equal_nat, f_equal.
rewrite <- vect_app_nil_cast; reflexivity.
Defined.
Lemma vect_app_cast_l {T} {sz1 sz1' sz2}:
forall (h: sz1 = sz1') (v1: vect T sz1) (v2: vect T sz2),
vect_app (rew h in v1) v2 = rew [fun sz => vect T (sz + sz2)] h in (vect_app v1 v2).
Proof. destruct h; reflexivity. Defined.
Lemma vect_app_cast_r {T} {sz1 sz1' sz2}:
forall (h: sz1 = sz1') (v1: vect T sz1) (v2: vect T sz2),
vect_app v2 (rew h in v1) = rew [fun sz => vect T (sz2 + sz)] h in (vect_app v2 v1).
Proof. destruct h; reflexivity. Defined.
Fixpoint vect_repeat {T} {sz} (n: nat) (v: vect T sz) : vect T (n * sz) :=
match n with
| 0 => vect_nil
| S n => vect_app v (vect_repeat n v)
end.
Lemma vect_repeat_single_const {T} n :
forall (t: T), vect_repeat n (vect_cons t vect_nil) = vect_const (n * 1) t.
Proof.
induction n; simpl; intros; try rewrite IHn; reflexivity.
Qed.
Fixpoint vect_split {T} {sz1 sz2} (v: vect T (sz1 + sz2)) {struct sz1} : vect T sz1 * vect T sz2 :=
match sz1 as n return (vect T (n + sz2) -> vect T n * vect T sz2) with
| 0 => fun v => (vect_nil, v)
| S sz1 =>
fun v => let '(v1, v2) := vect_split (vect_tl v) in
(vect_cons (vect_hd v) v1, v2)
end v.
Lemma vect_app_split {T} {sz1 sz2}:
forall (v: vect T (sz1 + sz2)),
vect_app (fst (vect_split v)) (snd (vect_split v)) = v.
Proof.
induction sz1; cbn; intros.
- reflexivity.
- rewrite (surjective_pairing (vect_split _)).
cbn. rewrite IHsz1, vect_cons_hd_tl. reflexivity.
Qed.
Lemma vect_split_app {T} {sz1 sz2}:
forall (v1: vect T sz1) (v2: vect T sz2),
vect_split (vect_app v1 v2) = (v1, v2).
Proof.
induction sz1; destruct v1; cbn; intros.
- reflexivity.
- rewrite IHsz1; reflexivity.
Qed.
Fixpoint vect_nth {T n} (v: vect T n) (idx: index n) {struct n} : T :=
match n return (vect T n -> index n -> T) with
| 0 => fun _ idx => False_rect _ idx
| S n => fun v idx =>
match idx with
| thisone => vect_hd v
| anotherone idx => vect_nth (vect_tl v) idx
end
end v idx.
Lemma vect_nth_inj {T n} (v1 v2: vect T n):
(forall idx, vect_nth v1 idx = vect_nth v2 idx) ->
v1 = v2.
Proof.
induction n; destruct v1, v2; cbn; intros H.
- reflexivity.
- f_equal.
apply (H thisone).
apply IHn; intros; apply (H (anotherone _)).
Qed.
Fixpoint vect_nth_const {T} (n: nat) (t: T) idx {struct n} :
vect_nth (vect_const n t) idx = t.
Proof.
destruct n; cbn; destruct idx; eauto.
Defined.
Fixpoint vect_replace {T n} (v: vect T n) (idx: index n) (t: T) :=
match n return (vect T n -> index n -> vect T n) with
| 0 => fun _ idx => False_rect _ idx
| S n => fun v idx =>
match idx with
| thisone => vect_cons t (vect_tl v)
| anotherone idx => vect_cons (vect_hd v) (vect_replace (vect_tl v) idx t)
end
end v idx.
Fixpoint vect_last {T n} (v: vect T (S n)) : T :=
match n return vect T (S n) -> T with
| O => fun v => vect_hd v
| S _ => fun v => vect_last (vect_tl v)
end v.
Definition vect_last_default {T n} (t: T) (v: vect T n) : T :=
match n return vect T n -> T with
| 0 => fun _ => t
| S n => fun v => vect_last v
end v.
Lemma vect_last_nth {T sz} :
forall (v: vect T (S sz)),
vect_last v = vect_nth v (largest_index sz).
Proof.
induction sz; simpl; intros; try rewrite IHsz; reflexivity.
Qed.
Fixpoint vect_map {T T' n} (f: T -> T') (v: vect T n) : vect T' n :=
match n return vect T n -> vect T' n with
| O => fun _ => vect_nil
| S _ => fun v => vect_cons (f (vect_hd v)) (vect_map f (vect_tl v))
end v.
Fixpoint vect_nth_map {T T' sz} (f: T -> T') {struct sz}:
forall (v: vect T sz) idx,
vect_nth (vect_map f v) idx = f (vect_nth v idx).
Proof.
destruct sz, idx; cbn; eauto.
Defined.
Lemma vect_map_map {T T' T'' n} (f: T -> T') (f': T' -> T'') :
forall (v: vect T n),
vect_map f' (vect_map f v) = vect_map (fun x => f' (f x)) v.
Proof.
induction n; cbn; intros; rewrite ?IHn; reflexivity.
Qed.
Lemma vect_map_pointwise_morphism {T T' n} (f f': T -> T') :
(forall x, f x = f' x) ->
forall (v: vect T n), vect_map f v = vect_map f' v.
Proof.
induction n; cbn; intros; rewrite ?H, ?IHn by eassumption; reflexivity.
Qed.
Lemma vect_map_id {T n} (f: T -> T):
(forall x, f x = x) ->
forall (v: vect T n), vect_map f v = v.
Proof.
induction n; destruct v; cbn; intros; rewrite ?H, ?IHn by eassumption; reflexivity.
Qed.
Fixpoint vect_map2 {T1 T2 T n} (f: T1 -> T2 -> T) (v1: vect T1 n) (v2: vect T2 n) : vect T n :=
match n return vect T1 n -> vect T2 n -> vect T n with
| O => fun _ _ => vect_nil
| S _ => fun v1 v2 => vect_cons (f (vect_hd v1) (vect_hd v2))
(vect_map2 f (vect_tl v1) (vect_tl v2))
end v1 v2.
Fixpoint vect_nth_map2 {T1 T2 T n} (f: T1 -> T2 -> T) (v1: vect T1 n) (v2: vect T2 n) {struct n}:
forall idx, vect_nth (vect_map2 f v1 v2) idx = f (vect_nth v1 idx) (vect_nth v2 idx).
Proof.
destruct n, idx; cbn; eauto.
Defined.
Definition vect_zip {T1 T2 n} (v1: vect T1 n) (v2: vect T2 n) : vect (T1 * T2) n :=
vect_map2 (fun b1 b2 => (b1, b2)) v1 v2.
Definition vect_nth_zip {T1 T2 n} (v1: vect T1 n) (v2: vect T2 n) :
forall idx, vect_nth (vect_zip v1 v2) idx = (vect_nth v1 idx, vect_nth v2 idx).
Proof.
apply vect_nth_map2.
Defined.
Fixpoint vect_fold_left {A T n} (f: A -> T -> A) (a0: A) (v: vect T n) : A :=
match n return vect T n -> A with
| O => fun _ => a0
| S _ => fun v => f (vect_fold_left f a0 (vect_tl v)) (vect_hd v)
end v.
Fixpoint vect_truncate_left {T sz} n (v: vect T (n + sz)) : vect T sz :=
match n return vect T (n + sz) -> vect T sz with
| 0 => fun v => v
| S n => fun v => vect_truncate_left n (vect_tl v)
end v.
Fixpoint vect_snoc {T sz} (t: T) (v: vect T sz) : vect T (S sz) :=
match sz return vect T sz -> vect T (S sz) with
| O => fun v => vect_cons t vect_nil
| S sz => fun v => vect_cons (vect_hd v) (vect_snoc t (vect_tl v))
end v.
Fixpoint vect_unsnoc {T sz} (v: vect T (S sz)) : T * vect T sz :=
match sz return vect T (S sz) -> T * vect T sz with
| O => fun v => (vect_hd v, vect_tl v)
| S sz => fun v => let '(t, v') := vect_unsnoc (vect_tl v) in
(t, vect_cons (vect_hd v) v')
end v.
Definition vect_cycle_l1 {T sz} (v: vect T sz) :=
match sz return vect T sz -> vect T sz with
| O => fun v => v
| S sz => fun v => vect_snoc (vect_hd v) (vect_tl v)
end v.
Definition vect_cycle_r1 {T sz} (v: vect T sz) :=
match sz return vect T sz -> vect T sz with
| O => fun v => v
| S sz => fun v => let '(t, v') := vect_unsnoc v in
vect_cons t v'
end v.
Fixpoint vect_dotimes {A} (f: A -> A) n (v: A)
: A :=
match n with
| O => v
| S n => vect_dotimes f n (f v)
end.
Definition vect_cycle_l {T sz} n (v: vect T sz) :=
vect_dotimes vect_cycle_l1 n v.
Definition vect_cycle_r {T sz} n (v: vect T sz) :=
vect_dotimes vect_cycle_r1 n v.
Fixpoint vect_skipn_cast n:
n = n - 0.
Proof. destruct n; cbn; auto. Defined.
Fixpoint vect_skipn {T sz} (n: nat) (v: vect T sz) : vect T (sz - n) :=
match n with
| 0 => rew (vect_skipn_cast sz) in v
| S n' => match sz return vect T sz -> vect T (sz - S n') with
| 0 => fun v => v
| S sz' => fun v => vect_skipn n' (vect_tl v)
end v
end.
Fixpoint vect_firstn {T sz} (n: nat) (v: vect T sz) : vect T (min n sz) :=
match n with
| 0 => vect_nil
| S n' => match sz return vect T sz -> vect T (min (S n') sz) with
| 0 => fun v => v
| S sz' => fun v => vect_cons (vect_hd v) (vect_firstn n' (vect_tl v))
end v
end.
Fixpoint vect_firstn_id_cast sz:
Nat.min sz sz = sz.
Proof. destruct sz; cbn; auto. Defined.
Lemma vect_firstn_id :
forall {T sz} (v: vect T sz),
vect_firstn sz v =
rew <- (vect_firstn_id_cast sz) in v.
Proof.
induction sz; destruct v.
- reflexivity.
- cbn.
rewrite IHsz.
unfold f_equal_nat, f_equal;
rewrite vect_firstn_id_cast; reflexivity.
Qed.
Fixpoint vect_firstn_plus_cast sz n:
Nat.min n (n + sz) = n.
Proof. destruct n; cbn; eauto. Defined.
Definition vect_firstn_plus {T sz} (n: nat) (v: vect T (n + sz)) : vect T n :=
rew (vect_firstn_plus_cast sz n) in
(vect_firstn n v).
Lemma vect_firstn_plus_eqn {T sz sz'}:
forall hd (v: vect T (sz + sz')),
vect_firstn_plus (S sz) (vect_cons hd v) =
vect_cons hd (vect_firstn_plus sz v).
Proof.
unfold vect_firstn_plus; cbn.
rewrite <- (vect_firstn_plus_cast sz' sz); reflexivity.
Qed.
Lemma vect_firstn_plus_app {T sz n}:
forall (prefix: vect T n) (v: vect T sz),
vect_firstn_plus n (vect_app prefix v) = prefix.
Proof.
induction n; destruct prefix; cbn; intros.
- destruct sz; reflexivity.
- rewrite vect_firstn_plus_eqn, IHn.
reflexivity.
Qed.
Fixpoint vect_skipn_plus_cast sz n:
n + sz - n = sz.
Proof. destruct n, sz; cbn; auto. Defined.
Definition vect_skipn_plus {T sz} (n: nat) (v: vect T (n + sz)) : vect T sz :=
rew (vect_skipn_plus_cast sz n) in
(vect_skipn n v).
Lemma vect_skipn_plus_eqn {T sz sz'}:
forall hd (v: vect T (sz + sz')),
vect_skipn_plus (S sz) (vect_cons hd v) =
vect_skipn_plus sz v.
Proof.
unfold vect_skipn_plus; cbn; intros.
destruct sz'; try rewrite <- (vect_skipn_plus_cast 0 sz); reflexivity.
Qed.
Lemma vect_skipn_plus_app {T sz n}:
forall (prefix: vect T n) (v: vect T sz),
vect_skipn_plus n (vect_app prefix v) = v.
Proof.
induction n; cbn; intros.
- destruct sz; reflexivity.
- rewrite vect_skipn_plus_eqn.
eauto.
Qed.
Lemma vect_skipn_skipn_plus :
forall {T sz} (n: nat) (v: vect T (n + sz)),
vect_skipn n v =
rew <- (vect_skipn_plus_cast sz n) in (vect_skipn_plus n v).
Proof. unfold vect_skipn_plus; intros; destruct vect_skipn_plus_cast; reflexivity. Qed.
Lemma vect_split_firstn_skipn :
forall {T sz sz'} (v: vect T (sz + sz')),
vect_split v =
(vect_firstn_plus sz v, vect_skipn_plus sz v).
Proof.
induction sz, sz'; cbn; destruct v; cbn;
try rewrite <- Eqdep_dec.eq_rect_eq_dec by apply eq_dec;
auto; rewrite IHsz; cbn;
setoid_rewrite vect_firstn_plus_eqn;
setoid_rewrite vect_skipn_plus_eqn;
reflexivity.
Qed.
Fixpoint vect_extend_beginning_cast' x y:
x + S y = S (x + y).
Proof. destruct x; cbn; rewrite ?vect_extend_beginning_cast'; reflexivity. Defined.
Fixpoint vect_extend_beginning_cast sz sz':
sz' - sz + sz = Nat.max sz sz'.
Proof.
destruct sz, sz'; cbn; auto.
cbn; rewrite <- vect_extend_beginning_cast; apply vect_extend_beginning_cast'.
Defined.
Definition vect_extend_beginning {T sz} (v: vect T sz) (sz': nat) (t: T) : vect T (Nat.max sz sz') :=
rew (vect_extend_beginning_cast sz sz') in
(vect_app (vect_const (sz' - sz) t) v).
Fixpoint vect_extend_end_cast sz sz':
sz + (sz' - sz) = Nat.max sz sz'.
Proof. destruct sz, sz'; cbn; auto. Defined.
Definition vect_extend_end {T sz} (v: vect T sz) (sz': nat) (t: T) : vect T (Nat.max sz sz') :=
rew (vect_extend_end_cast sz sz') in
(vect_app v (vect_const (sz' - sz) t)).
Fixpoint vect_extend_end_firstn_cast sz sz':
Nat.max (Nat.min sz sz') sz = sz.
Proof. destruct sz, sz'; cbn; auto. Defined.
Definition vect_extend_end_firstn {T sz sz'} (v: vect T (Nat.min sz sz')) (t: T) : vect T sz :=
rew (vect_extend_end_firstn_cast sz sz') in
(vect_extend_end v sz t).
Lemma vect_extend_end_firstn_simpl :
forall {T sz} (v: vect T sz) n b,
forall (eqn: Nat.min n sz = n),
vect_extend_end_firstn (vect_firstn n v) b =
rew eqn in (vect_firstn n v).
Proof.
unfold vect_extend_end_firstn, vect_extend_end; intros.
rewrite <- eq_trans_rew_distr.
set (eq_trans _ _) as Heq; clearbody Heq.
revert Heq; replace (n - Nat.min n sz) with 0 by lia; intros.
rewrite vect_app_nil.
rewrite <- eq_trans_rew_distr.
set (eq_trans _ _) as Heq'; clearbody Heq'.
apply eq_rect_eqdec_irrel.
Qed.
Fixpoint vect_find {T sz} (f: T -> bool) (v: vect T sz) : option T :=
match sz return vect T sz -> option T with
| 0 => fun _ => None
| S n => fun v => if f (vect_hd v) then Some (vect_hd v)
else vect_find f (vect_tl v)
end v.
Fixpoint vect_find_index {T sz} (f: T -> bool) (v: vect T sz) : option (index sz) :=
match sz return vect T sz -> option (index sz) with
| 0 => fun _ => None
| S n => fun v => if f (vect_hd v) then Some thisone
else match vect_find_index f (vect_tl v) with
| Some idx => Some (anotherone idx)
| None => None
end
end v.
Definition vect_index {T sz} {EQ: EqDec T} (k: T) (v: vect T sz) : option (index sz) :=
vect_find_index (fun t => beq_dec t k) v.
Lemma vect_nth_index {T sz} {EQ: EqDec T}:
forall (t: T) (v: vect T sz) (idx: index sz),
vect_index t v = Some idx ->
vect_nth v idx = t.
Proof.
induction sz.
- destruct idx.
- cbn; unfold beq_dec; intros t v idx Heq;
destruct (eq_dec (vect_hd v) t); subst.
inversion Heq; subst.
+ reflexivity.
+ destruct (vect_find_index _ _) eqn:?; inversion Heq; subst; eauto.
Qed.
Lemma vect_nth_index_None {T sz} {EQ: EqDec T}:
forall (t: T) (v: vect T sz),
vect_index t v = None ->
forall idx, vect_nth v idx <> t.
Proof.
induction sz.
- destruct idx.
- cbn; unfold beq_dec; intros t v Heq idx;
destruct (eq_dec (vect_hd v) t); subst; try discriminate;
destruct idx.
+ assumption.
+ destruct (vect_find_index _ _) eqn:?; try discriminate; eauto.
Qed.
Definition vect_In {T sz} t (v: vect T sz) : Prop :=
vect_fold_left (fun acc t' => acc \/ t = t') False v.
Lemma vect_map_In {T T' sz} (f: T -> T'):
forall t (v: vect T sz),
vect_In t v -> vect_In (f t) (vect_map f v).
Proof.
induction sz; destruct v; cbn;
firstorder (subst; firstorder).
Qed.
Lemma vect_map_In_ex {T T' sz} (f: T -> T'):
forall t' (v: vect T sz),
vect_In t' (vect_map f v) -> (exists t, t' = f t /\ vect_In t v).
Proof.
induction sz; destruct v; cbn.
- destruct 1.
- firstorder.
Qed.
Lemma vect_map_In_iff {T T' sz} (f: T -> T'):
forall t' (v: vect T sz),
(exists t, t' = f t /\ vect_In t v) <-> vect_In t' (vect_map f v).
Proof.
split.
- intros [t (-> & H)]; eauto using vect_map_In.
- apply vect_map_In_ex.
Qed.
Section Conversions.
Fixpoint vect_of_list {T} (l: list T) : vect T (length l) :=
match l with
| nil => vect_nil
| cons h t => vect_cons h (vect_of_list t)
end.
Definition vect_to_list {T n} (v: vect T n) : list T :=
vect_fold_left (fun acc t => List.cons t acc) List.nil v.
Lemma vect_to_list_inj T :
forall sz (v1 v2: vect T sz),
vect_to_list v1 = vect_to_list v2 ->
v1 = v2.
Proof.
induction sz; destruct v1, v2; cbn.
- reflexivity.
- inversion 1; subst; f_equal; apply IHsz; eassumption.
Qed.
Lemma vect_to_list_In {T sz} :
forall t (v: vect T sz),
vect_In t v <-> List.In t (vect_to_list v).
Proof.
induction sz; destruct v; cbn.
- reflexivity.
- setoid_rewrite IHsz.
firstorder.
Qed.
Lemma vect_to_list_app {T sz sz'}:
forall (v: vect T sz) (v': vect T sz'),
vect_to_list (vect_app v v') =
List.app (vect_to_list v) (vect_to_list v').
Proof.
induction sz; destruct v; cbn; intros;
try setoid_rewrite IHsz; reflexivity.
Qed.
Fixpoint vect_to_list_nth {T sz} {struct sz}:
forall (v: vect T sz) idx,
List.nth_error (vect_to_list v) (index_to_nat idx) =
Some (vect_nth v idx).
Proof.
destruct sz, v, idx; cbn.
- reflexivity.
- apply vect_to_list_nth.
Defined.
Lemma vect_to_list_length {T sz}:
forall (v: vect T sz),
List.length (vect_to_list v) = sz.
Proof.
induction sz; cbn; intros.
- reflexivity.
- f_equal; apply IHsz; assumption.
Qed.
Lemma vect_to_list_eq_rect {T sz sz'} :
forall (v: vect T sz) (pr: sz = sz'),
vect_to_list (eq_rect _ _ v _ pr) = vect_to_list v.
Proof. destruct pr; reflexivity. Defined.
Lemma vect_to_list_eq_rect_fn {T sz sz'} (f: nat -> nat):
forall (v: vect T (f sz)) (pr: sz = sz'),
vect_to_list (rew [fun sz => vect T (f sz)] pr in v) = vect_to_list v.
Proof. destruct pr; reflexivity. Defined.
Fixpoint vect_to_list_firstn {T sz}:
forall n (v: vect T sz),
vect_to_list (vect_firstn n v) =
List.firstn n (vect_to_list v).
Proof.
destruct n, sz; cbn in *; try reflexivity; destruct v.
setoid_rewrite vect_to_list_firstn.
reflexivity.
Qed.
Fixpoint vect_to_list_skipn {T sz}:
forall n (v: vect T sz),
vect_to_list (vect_skipn n v) =
List.skipn n (vect_to_list v).
Proof.
destruct n, sz; cbn in *; try reflexivity; destruct v.
setoid_rewrite vect_to_list_skipn.
reflexivity.
Qed.
Fixpoint const {T} (n: nat) (t: T) :=
match n with
| O => List.nil
| S n => List.cons t (const n t)
end.
Lemma vect_to_list_const {T}:
forall n (t: T),
vect_to_list (vect_const n t) =
const n t.
Proof.
induction n; cbn; try setoid_rewrite IHn; reflexivity.
Qed.
Lemma vect_to_list_map {T T' sz} (f: T -> T'):
forall (v: vect T sz),
vect_to_list (vect_map f v) = List.map f (vect_to_list v).
Proof.
induction sz; destruct v; cbn.
- reflexivity.
- setoid_rewrite IHsz; reflexivity.
Qed.
End Conversions.
Hint Rewrite @vect_to_list_eq_rect : vect_to_list.
Hint Rewrite @vect_to_list_eq_rect_fn : vect_to_list.
Hint Rewrite @vect_to_list_app : vect_to_list.
Hint Rewrite @vect_to_list_firstn : vect_to_list.
Hint Rewrite @vect_to_list_skipn : vect_to_list.
Hint Rewrite @vect_to_list_const : vect_to_list.
Hint Rewrite @vect_to_list_map : vect_to_list.
Hint Rewrite @vect_to_list_length : vect_to_list.
Hint Rewrite @firstn_firstn : vect_to_list_cleanup.
Hint Rewrite @List.firstn_app : vect_to_list_cleanup.
Hint Rewrite @List.skipn_app : vect_to_list.
Hint Rewrite @List.firstn_nil : vect_to_list_cleanup.
Hint Rewrite @List.firstn_length : vect_to_list_cleanup.
Hint Rewrite @Nat.sub_0_r : vect_to_list_cleanup.
Hint Rewrite @List.app_nil_r : vect_to_list_cleanup.
Hint Rewrite @Nat.sub_diag : vect_to_list_cleanup.
Definition vect_NoDup {T n} (v: vect T n) : Prop :=
List.NoDup (vect_to_list v).
Lemma NoDup_dec {A}:
(forall x y:A, {x = y} + {x <> y}) ->
forall (l: list A), {NoDup l} + {~ NoDup l}.
Proof.
intro Hdec; induction l as [| a0 l IHl].
- eauto using NoDup_nil.
- destruct (in_dec Hdec a0 l), IHl;
(eauto using NoDup_cons || (right; inversion 1; subst; contradiction)).
Defined.
Definition vect_no_dup {A n} {EQ: EqDec A} (v: vect A n) :=
if NoDup_dec eq_dec (vect_to_list v) then true else false.
Lemma vect_NoDup_nth {T sz}:
forall (v: vect T sz),
vect_NoDup v <-> (forall idx idx', vect_nth v idx' = vect_nth v idx -> idx' = idx).
Proof.
unfold vect_NoDup; split.
- intros HNoDup **; rewrite NoDup_nth_error in HNoDup.
apply index_to_nat_injective, HNoDup.
rewrite vect_to_list_length; apply index_to_nat_bounded.
rewrite !vect_to_list_nth; congruence.
- intros Hinj. rewrite NoDup_nth_error; intros n1 n2 Hlt Heq.
rewrite vect_to_list_length in Hlt.
destruct (index_of_nat_bounded Hlt) as [ idx1 Heq1 ].
apply index_to_nat_of_nat in Heq1; subst.
rewrite vect_to_list_nth in Heq.
assert (n2 < sz) as Hlt2 by (rewrite <- (vect_to_list_length v); apply nth_error_Some; congruence).
destruct (index_of_nat_bounded Hlt2) as [ idx2 Heq2 ].
apply index_to_nat_of_nat in Heq2; subst.
rewrite vect_to_list_nth in Heq.
inversion Heq as [Heq'].
rewrite (Hinj _ _ Heq');
reflexivity.
Qed.
Lemma vect_no_dup_NoDup {T sz} {EQ: EqDec T}:
forall (v: vect T sz), vect_no_dup v = true <-> vect_NoDup v.
Proof.
unfold vect_NoDup, vect_no_dup.
intros; destruct NoDup_dec; intuition; discriminate.
Qed.
Lemma vect_index_nth {T sz} {EQ: EqDec T}:
forall (v: vect T sz),
vect_NoDup v ->
forall (idx: index sz), vect_index (vect_nth v idx) v = Some idx.
Proof.
intros v HNoDup idx.
destruct (vect_index _ _) as [ idx' | ] eqn:Heq.
- rewrite vect_NoDup_nth in HNoDup.
f_equal; apply vect_nth_index in Heq; eauto.
- eapply vect_nth_index_None in Heq.
contradiction Heq; reflexivity.
Qed.
Instance EqDec_vect_nil T `{EqDec T} : EqDec (vect_nil_t T) := _.
Instance EqDec_vect_cons A B `{EqDec A} `{EqDec B} : EqDec (vect_cons_t A B) := _.
Instance EqDec_vect T n `{EqDec T} : EqDec (vect T n).
Proof. induction n; cbn; eauto using EqDec_vect_nil, EqDec_vect_cons; eassumption. Defined.
Require Import Lia.
Section Npow2.
Open Scope N_scope.
Lemma Npow2_ge_1 :
forall n, (1 <= N.pow 2 n)%N.
Proof.
induction n using N.peano_ind.
- reflexivity.
- rewrite N.pow_succ_r'; nia.
Qed.
Lemma N_lt_pow2_succ_1 :
forall n m,
1 + 2 * n < 2 ^ N.succ m ->
n < 2 ^ m.
Proof.
intros * Hlt.
rewrite N.pow_succ_r' in Hlt.
rewrite N.mul_lt_mono_pos_l with (p := 2).
rewrite N.add_1_l in Hlt.
apply N.lt_succ_l.
eassumption.
econstructor.
Qed.
Lemma N_lt_pow2_succ :
forall n m,
2 * n < 2 ^ N.succ m ->
n < 2 ^ m.
Proof.
intros * Hlt.
rewrite N.pow_succ_r' in Hlt.
rewrite N.mul_lt_mono_pos_l with (p := 2).
eassumption.
econstructor.
Qed.
End Npow2.
Section pow2.
(* The S (pred …) makes it clear to the typechecher that the result is nonzero *)
Definition pow2 n :=
S (pred (Nat.pow 2 n)).
Arguments pow2 / !n : assert.
Lemma pow2_correct : forall n, pow2 n = Nat.pow 2 n.
Proof.
unfold pow2; induction n; simpl.
- reflexivity.
- destruct (Nat.pow 2 n); simpl; (discriminate || reflexivity).
Qed.
Lemma le_pow2_log2 :
forall sz, sz <= pow2 (Nat.log2_up sz).
Proof.
intros; rewrite pow2_correct.
destruct sz; [ | apply Nat.log2_log2_up_spec ]; auto with arith.
Qed.
Lemma pred_lt_pow2_log2 :
forall sz, pred sz < pow2 (Nat.log2_up sz).
Proof.
destruct sz; cbn; auto using le_pow2_log2 with arith.
Qed.
Lemma N_pow_Nat_pow :
forall n m,
N.pow (N.of_nat m) (N.of_nat n) =
N.of_nat (Nat.pow m n).
Proof.
induction n; intros.
- reflexivity.
- rewrite Nat2N.inj_succ; cbn; rewrite Nat2N.inj_mul, <- IHn.
rewrite N.pow_succ_r'; reflexivity.
Qed.
End pow2.
Module VectNotations.
Declare Scope vect.
Delimit Scope vect with vect.
Notation "[ ]" := (vect_nil) (format "[ ]") : vect.
Notation "h :: t" := (vect_cons h t) (at level 60, right associativity) : vect.
Notation "[ x ]" := (vect_cons x vect_nil) : vect.
Notation "[ x ; y ; .. ; z ]" := (vect_cons x (vect_cons y .. (vect_cons z vect_nil) ..)) : vect.
Infix "++" := vect_app : vect.
End VectNotations.
Export VectNotations.
(* https://coq-club.inria.narkive.com/HeWqgvKm/boolean-simplification *)
Hint Rewrite
andb_diag (** b && b -> b **)
orb_diag (** b || b -> b **)
orb_false_r (** b || false -> b *)
orb_false_l (** false || b -> b *)
orb_true_r (** b || true -> true *)
orb_true_l (** true || b -> true *)
andb_false_r (** b && false -> false *)
andb_false_l (** false && b -> false *)
andb_true_r (** b && true -> b *)
andb_true_l (** true && b -> b *)
negb_orb (** negb (b || c) -> negb b && negb c *)
negb_andb (** negb (b && c) -> negb b || negb c *)
negb_involutive (** negb (negb b) -> b *)
: bool_simpl.
Ltac bool_simpl :=
autorewrite with bool_simpl in *.
Module Bits.
Notation bits := (vect bool).
Notation nil := (@vect_nil bool).
Notation cons := (@vect_cons bool).
Notation const := (@vect_const bool).
Notation app := (fun x y => @vect_app bool _ _ y x). (* !! *)
Notation repeat := (@vect_repeat bool).
Notation split := (@vect_split bool).
Notation nth := (@vect_nth bool).
Notation hd := (@vect_hd bool).
Notation tl := (@vect_tl bool).
Notation single := (@hd 0).
Notation map := (@vect_map bool).
Notation map2 := (@vect_map2 bool).
Notation of_list := (@vect_of_list bool).
Notation extend_beginning := (@vect_extend_beginning bool).
Notation extend_end := (@vect_extend_end bool).
Notation zeroes n := (@const n false).
Notation ones n := (@const n true).
Notation lsb := (@vect_hd_default bool _ false).
Notation msb := (@vect_last_default bool _ false).
Fixpoint rmul n m :=
match n with
| 0 => 0
| S p => rmul p m + m
end.
Lemma rmul_correct : forall n m, rmul n m = Nat.mul n m.
Proof. induction n; cbn; intros; rewrite ?IHn; auto with arith. Qed.
Fixpoint splitn {n sz} (bs: bits (rmul n sz)) : vect (bits sz) n :=
match n return bits (rmul n sz) -> vect (bits sz) n with
| 0 => fun _ => vect_nil
| S n => fun v => let (rest, hd) := vect_split v in
vect_cons hd (splitn rest)
end bs.
Fixpoint appn {n sz} (bss: vect (bits sz) n) : bits (rmul n sz) :=
match n return vect (bits sz) n -> bits (rmul n sz) with
| 0 => fun _ => Bits.nil