-
Notifications
You must be signed in to change notification settings - Fork 12
/
TypedSyntaxProperties.v
125 lines (112 loc) · 4.39 KB
/
TypedSyntaxProperties.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
(*! Tools | Lemmas pertaining to tools on typed syntax !*)
Require Import Koika.TypedSyntaxFunctions Koika.TypedSemantics.
Section TypedSyntaxProperties.
Context {pos_t var_t fn_name_t rule_name_t reg_t ext_fn_t: Type}.
Context {reg_t_eq_dec: EqDec reg_t}.
Context {R: reg_t -> type}.
Context {Sigma: ext_fn_t -> ExternalSignature}.
Context {REnv: Env reg_t}.
Context (r: REnv.(env_t) R).
Context (sigma: forall f, Sig_denote (Sigma f)).
Notation rule := (rule pos_t var_t fn_name_t R Sigma).
Notation action := (action pos_t var_t fn_name_t R Sigma).
Notation scheduler := (scheduler pos_t rule_name_t).
Notation Log := (Log R REnv).
Lemma bits_to_N_zero:
forall (tau : type) (cst : tau),
N.eqb (Bits.to_N (bits_of_value cst)) N.zero = true ->
bits_of_value cst = Bits.zeroes (type_sz tau).
Proof.
intros * Heq%Neqb_ok.
apply Bits.to_N_inj.
rewrite Bits.to_N_zeroes.
assumption.
Qed.
Ltac dec_step :=
match goal with
| _ => progress intros
| _ => eassumption || discriminate || reflexivity
| _ => bool_step || cleanup_step
| _ => progress (cbn in *; subst)
| [ H: False |- _ ] => destruct H
| [ H: Some _ = Some _ |- _ ] => inversion H; subst; clear H
| [ H: context[let/opt _ := ?x in _] |- _ ] =>
destruct x as [ ((? & ?) & ?) | ] eqn:?
| [ |- context[if ?x then _ else _] ] =>
destruct x eqn:?
| [ H: context[if ?x then _ else _] |- _ ] =>
destruct x eqn:?
| [ H: Some _ = Some _ |- _ ] => inversion H; subst; clear H
| _ => solve [intuition eauto 3 using bits_to_N_zero]
end.
Lemma returns_zero_correct {sig tau} :
forall (a: action sig tau) (Gamma: tcontext sig) (sched_log: Log) (action_log: Log),
returns_zero a = true ->
forall l v G,
interp_action r sigma Gamma sched_log action_log a = Some (l, v, G) ->
bits_of_value v = Bits.zeroes (type_sz tau).
Proof.
induction a; repeat dec_step.
Qed.
Lemma is_pure_correct :
forall {sig tau} (a: action sig tau) (Gamma: tcontext sig) (sched_log: Log) (action_log: Log),
is_pure a = true ->
forall l l' v G,
l = l' ->
interp_action r sigma Gamma sched_log action_log a = Some (l', v, G) ->
l = action_log.
Proof.
fix IH 3; destruct a; repeat dec_step.
assert (forall l l' v G,
l = l' ->
interp_args r sigma Gamma sched_log action_log args = Some (l', v, G) ->
l = action_log).
{ clear dependent a; clear t t2 Heqo.
revert dependent Gamma.
revert dependent sched_log.
revert dependent action_log.
generalize dependent (rev argspec); clear argspec.
fix IHargs 2; destruct args; cbn; intros;
repeat dec_step. }
etransitivity; [ eapply IH | ].
all: eauto.
Qed.
Lemma action_type_correct {sig tau} (a: action sig tau):
forall tau', action_type a = Some tau' -> tau = tau'.
Proof. destruct a; cbn; inversion 1; reflexivity. Qed.
Lemma is_tt_correct {sig tau} :
forall (a: action sig tau) (Gamma: tcontext sig) (sched_log: Log) (action_log: Log),
is_tt a = true ->
tau = unit_t /\
forall l v G,
interp_action r sigma Gamma sched_log action_log a = Some (l, v, G) ->
bits_of_value v = Bits.zeroes (type_sz tau).
Proof.
unfold is_tt;
repeat match goal with
| _ => dec_step
| [ |- _ /\ _ ] => split
| [ H: vect_nil_t _ |- _ ] => destruct H
| [ H: context[beq_dec] |- _ ] => rewrite beq_dec_iff in H
| [ H: context[action_type _] |- _ ] => apply action_type_correct in H
| [ H: is_pure ?a = true |- _ ] => pose proof (is_pure_correct _ _ _ _ H)
| [ H: is_pure ?a = true |- context[interp_action _ _ ?G ?L ?l ?a]] =>
pose proof (is_pure_correct a G L l H); clear H;
destruct interp_action as [ ((? & ?) & ?) | ] eqn:?
end.
Qed.
Lemma interp_arithmetic_correct {sig tau} :
forall (a: action sig tau) (Gamma: tcontext sig) (sched_log: Log) (action_log: Log) res,
interp_arithmetic a = Some res ->
forall l v G,
interp_action r sigma Gamma sched_log action_log a = Some (l, v, G) ->
v = res.
Proof.
induction a;
repeat match goal with
| _ => dec_step
| [ H: context[opt_bind ?x] |- _ ] => destruct x
| _ => f_equal
end.
Qed.
End TypedSyntaxProperties.