-
Notifications
You must be signed in to change notification settings - Fork 12
/
PrimitiveProperties.v
420 lines (388 loc) · 14 KB
/
PrimitiveProperties.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
(*! Equations showing how to implement functions on structures and arrays as bitfuns !*)
Require Import Koika.Primitives.
Import BitFuns.
Require Import Lia.
Ltac min_t :=
repeat match goal with
| [ |- context[Min.min ?x ?y] ] =>
first [rewrite (Min.min_l x y) by min_t | rewrite (Min.min_r x y) by min_t ]
| _ => lia
end.
Lemma slice_end :
forall sz sz' (v : bits (sz + sz')),
Bits.slice sz sz' v = vect_skipn_plus sz v.
Proof.
intros.
apply vect_to_list_inj.
unfold Bits.slice, vect_skipn_plus, vect_extend_end_firstn, vect_extend_end.
autorewrite with vect_to_list.
min_t; rewrite Nat.sub_diag by lia; cbn.
rewrite app_nil_r.
rewrite firstn_skipn.
rewrite firstn_all2 by (rewrite vect_to_list_length; reflexivity).
reflexivity.
Qed.
Lemma slice_front :
forall n sz (v: bits (n + sz)) offset width,
offset + width <= n ->
Bits.slice offset width v =
Bits.slice offset width (vect_firstn_plus n v).
Proof.
intros.
apply vect_to_list_inj.
unfold Bits.slice, vect_extend_end_firstn, vect_extend_end, vect_firstn_plus.
autorewrite with vect_to_list.
rewrite skipn_firstn, firstn_firstn.
min_t; reflexivity.
Qed.
Lemma struct_slice_correct_le :
forall fields idx,
struct_fields_sz (skipn (S (index_to_nat idx)) fields) + type_sz (snd (List_nth fields idx)) <=
struct_fields_sz fields.
Proof.
intros.
change (type_sz (snd (List_nth fields idx))) with (struct_fields_sz [List_nth fields idx]).
rewrite plus_comm; setoid_rewrite <- list_sum_app; rewrite <- map_app; cbn [List.app].
rewrite List_nth_skipn_cons_next.
rewrite <- skipn_map.
apply list_sum_skipn_le.
Qed.
Lemma array_slice_correct_le :
forall n n' sz,
n' < n ->
Bits.rmul (n - S n') sz + sz <= Bits.rmul n sz.
Proof.
intros.
rewrite !Bits.rmul_correct.
rewrite <- Nat.mul_succ_l.
auto using Nat.mul_le_mono_r with arith.
Qed.
Lemma slice_subst_end :
forall sz0 sz (bs0: bits (sz0 + sz)) (bs: bits sz),
Bits.slice_subst sz0 sz bs0 bs = Bits.app bs (fst (Bits.split bs0)).
Proof.
unfold Bits.split; intros; rewrite vect_split_firstn_skipn; cbn.
apply vect_to_list_inj.
unfold Bits.slice_subst, vect_skipn_plus, vect_firstn_plus, vect_extend_end_firstn, vect_extend_end.
autorewrite with vect_to_list.
rewrite !firstn_app.
rewrite firstn_length_le by (rewrite vect_to_list_length; lia).
rewrite !minus_plus, vect_to_list_length, Nat.sub_diag; cbn.
rewrite firstn_firstn by lia; min_t.
rewrite (firstn_all2 (n := sz)) by (rewrite vect_to_list_length; lia).
rewrite app_nil_r; reflexivity.
Qed.
Lemma slice_subst_front :
forall sz0 sz width (bs0: bits (sz0 + sz)) (bs: bits width) offset,
offset + width <= sz0 ->
Bits.slice_subst offset width bs0 bs =
Bits.app (vect_skipn_plus sz0 bs0) (Bits.slice_subst offset width (vect_firstn_plus sz0 bs0) bs).
Proof.
clear.
intros.
apply vect_to_list_inj;
unfold Bits.slice_subst, vect_skipn_plus, vect_firstn_plus, vect_extend_end_firstn, vect_extend_end.
autorewrite with vect_to_list.
rewrite !firstn_app.
rewrite firstn_length_le by (rewrite vect_to_list_length; lia).
rewrite vect_to_list_length; cbn.
rewrite !firstn_firstn; repeat min_t.
rewrite firstn_length_le by (rewrite vect_to_list_length; lia).
rewrite <- !app_assoc.
rewrite skipn_firstn, firstn_firstn.
min_t.
rewrite !(firstn_all2 (vect_to_list bs)) by (rewrite vect_to_list_length; lia).
replace (sz0 + sz - offset - width) with (sz0 + sz - (offset + width)) by lia.
replace (sz0 - offset - width) with (sz0 - (offset + width)) by lia.
rewrite <- !skipn_firstn.
rewrite (firstn_all2 (n := sz0 + sz)) by (rewrite vect_to_list_length; lia).
rewrite <- skipn_app by (rewrite firstn_length, vect_to_list_length; min_t; lia).
rewrite List.firstn_skipn.
reflexivity.
Qed.
Ltac _eq_t :=
unfold _eq, _neq, beq_dec;
intros; repeat destruct eq_dec;
try match goal with
| [ H: bits_of_value _ = bits_of_value _ |- _ ] => apply bits_of_value_inj in H
end; subst; congruence.
Lemma _eq_of_value:
forall {tau: type} {EQ: EqDec tau} (a1 a2: tau),
_eq (bits_of_value a1) (bits_of_value a2) =
_eq a1 a2.
Proof. _eq_t. Qed.
Lemma _neq_of_value:
forall {tau: type} {EQ: EqDec tau} (a1 a2: tau),
_neq (bits_of_value a1) (bits_of_value a2) =
_neq a1 a2.
Proof. _eq_t. Qed.
Lemma get_field_bits_slice:
forall {sig} (idx : struct_index sig) (a : type_denote (struct_t sig)),
Bits.slice (field_offset_right sig idx) (field_sz sig idx) (bits_of_value a) =
bits_of_value (get_field (struct_fields sig) a idx).
Proof.
intro sig;
repeat (simpl; unfold struct_index, field_type, field_sz, field_offset_right).
induction (struct_fields sig) as [ | (nm & tau) l ]; simpl.
* destruct idx.
* destruct idx as [ | idx], a; cbn in *; intros.
-- rewrite slice_end, vect_skipn_plus_app.
reflexivity.
-- rewrite <- IHl.
rewrite slice_front, vect_firstn_plus_app by apply struct_slice_correct_le.
reflexivity.
Qed.
Lemma get_element_bits_slice:
forall (sig : array_sig) (idx : array_index sig)
(a : vect (array_type sig) (array_len sig)),
Bits.slice (element_offset_right sig idx) (element_sz sig)
(Bits.appn (vect_map bits_of_value a)) =
bits_of_value (vect_nth a idx).
Proof.
intros sig;
repeat (simpl; unfold array_index, element_sz, element_offset_right).
induction (array_len sig); simpl.
* destruct idx.
* destruct idx as [ | idx], a; cbn in *; intros.
-- rewrite Nat.sub_0_r, slice_end, vect_skipn_plus_app.
reflexivity.
-- rewrite <- IHn.
rewrite slice_front, vect_firstn_plus_app by apply array_slice_correct_le, index_to_nat_bounded.
reflexivity.
Qed.
Lemma subst_field_bits_slice_subst:
forall {sig} (idx : struct_index sig) (a1 : type_denote (struct_t sig)) (a2 : field_type sig idx),
Bits.slice_subst (field_offset_right sig idx) (field_sz sig idx) (bits_of_value a1) (bits_of_value a2) =
bits_of_value (tau := struct_t _) (subst_field (struct_fields sig) a1 idx a2).
Proof.
intro sig;
repeat (simpl; unfold struct_index, field_type, field_sz, field_offset_right).
induction (struct_fields sig) as [ | (nm & tau) l ]; simpl.
* destruct idx.
* destruct idx as [ | idx], a1; cbn in *; intros.
-- rewrite slice_subst_end, vect_split_app.
reflexivity.
-- rewrite <- IHl.
rewrite slice_subst_front, vect_firstn_plus_app, vect_skipn_plus_app by apply struct_slice_correct_le.
reflexivity.
Qed.
Lemma subst_element_bits_slice_subst:
forall (sig : array_sig) (idx : array_index sig)
(a1 : vect (array_type sig) (array_len sig)) (a2 : array_type sig),
Bits.slice_subst (element_offset_right sig idx) (element_sz sig)
(Bits.appn (vect_map bits_of_value a1)) (bits_of_value a2) =
Bits.appn (vect_map bits_of_value (vect_replace a1 idx a2)).
Proof.
intro sig;
repeat (simpl; unfold array_index, element_sz, element_offset_right).
induction (array_len sig); simpl.
* destruct 1.
* destruct idx as [ | idx], a1; cbn in *; intros.
-- rewrite Nat.sub_0_r, slice_subst_end, vect_split_app.
reflexivity.
-- rewrite <- IHn.
rewrite slice_subst_front, vect_firstn_plus_app, vect_skipn_plus_app by apply array_slice_correct_le, index_to_nat_bounded.
reflexivity.
Qed.
Lemma sel_msb {sz} (bs: bits sz):
BitFuns.sel bs (Bits.of_nat (log2 sz) (pred sz)) =
Ob~(Bits.msb bs).
Proof.
unfold sel, Bits.to_index.
rewrite Bits.to_nat_of_nat by eauto using pred_lt_pow2_log2.
destruct sz.
- reflexivity.
- rewrite index_of_nat_largest.
setoid_rewrite vect_last_nth; reflexivity.
Qed.
Definition slice_subst_impl {sz} offset {width} (a1: bits sz) (a2: bits width) :=
match le_gt_dec offset sz with
| left pr =>
rew le_plus_minus_r offset sz pr in
((Bits.slice 0 offset a1) ++
(match le_gt_dec width (sz - offset) with
| left pr =>
rew le_plus_minus_r width (sz - offset) pr in
(a2 ++ Bits.slice (offset + width) (sz - offset - width) a1)
| right _ => Bits.slice 0 (sz - offset) a2
end))%vect
| right _ => a1
end.
Hint Unfold Bits.slice : vect_to_list.
Hint Unfold Bits.slice_subst : vect_to_list.
Hint Unfold slice_subst_impl : vect_to_list.
Hint Unfold vect_extend_end : vect_to_list.
Hint Unfold vect_extend_end_firstn : vect_to_list.
Ltac vect_to_list_t_step :=
match goal with
| _ => progress cbn
| _ => progress (autounfold with vect_to_list)
| _ => progress autorewrite with vect_to_list vect_to_list_cleanup
| [ |- context[match ?x with _ => _ end] ] => destruct x
| _ => repeat rewrite ?Min.min_l, ?Min.min_r by lia
end.
Ltac vect_to_list_t :=
try apply vect_to_list_inj; repeat vect_to_list_t_step.
Lemma slice_subst_impl_correct :
forall {sz} offset {width} (a1: bits sz) (a2: bits width),
Bits.slice_subst offset width a1 a2 =
slice_subst_impl offset a1 a2.
Proof.
intros; vect_to_list_t.
- rewrite (firstn_all2 (n := sz - offset)) by (autorewrite with vect_to_list; lia).
reflexivity.
- rewrite (skipn_all2 (n := offset + width)) by (autorewrite with vect_to_list; lia).
autorewrite with vect_to_list_cleanup; reflexivity.
- rewrite (firstn_all2 (n := sz)) by (autorewrite with vect_to_list; lia).
reflexivity.
Qed.
Lemma slice_full {sz}:
forall (bs: bits sz),
Bits.slice 0 sz bs = bs.
Proof.
intros; vect_to_list_t.
rewrite (firstn_all2 (n := sz)) by (autorewrite with vect_to_list; lia);
reflexivity.
Qed.
Lemma slice_concat_l {sz1 sz2} :
forall (bs1: bits sz1) (bs2: bits sz2),
Bits.slice 0 sz1 (bs1 ++ bs2)%vect = bs1.
Proof.
intros; vect_to_list_t.
rewrite (firstn_all2 (n := sz1)) by (autorewrite with vect_to_list; lia);
reflexivity.
Qed.
Lemma slice_concat_r {sz1 sz2} :
forall (bs1: bits sz1) (bs2: bits sz2),
Bits.slice sz1 sz2 (bs1 ++ bs2)%vect = bs2.
Proof.
intros; vect_to_list_t.
rewrite (skipn_all2 (n := sz1)) by (autorewrite with vect_to_list; lia).
vect_to_list_t.
rewrite (firstn_all2 (n := sz2)) by (autorewrite with vect_to_list; lia).
reflexivity.
Qed.
Section Arithmetic.
(* The next lemmas simplify 2 * x *)
Arguments N.mul / !n !m.
(* This might require another hypothesis to be correct *)
Lemma sel_spec :
forall (sz: nat) (bs: bits sz) idx,
BitFuns.sel bs idx = Ob~(N.testbit (Bits.to_N bs) (Bits.to_N idx)).
Proof.
intros.
unfold BitFuns.sel.
f_equal.
unfold Bits.to_index.
destruct (index_of_nat sz (Bits.to_nat idx)) eqn:Hindex.
- rewrite <-(N2Nat.id (Bits.to_N idx)).
fold (Bits.to_nat idx).
remember (Bits.to_nat idx) as n_idx eqn:Hn_idx.
clear Hn_idx idx.
generalize dependent sz.
induction n_idx as [| idx IH].
+ intros sz bs i Hindex. cbn.
destruct sz; [destruct i | ].
inversion Hindex. repeat cleanup_step.
destruct bs. repeat cleanup_step.
rewrite N.add_comm. fold (N.b2n vhd).
rewrite N.testbit_0_r.
reflexivity.
+ intros sz bs i Hindex. rewrite Nat2N.inj_succ.
destruct sz; [destruct i | ].
cbn in Hindex.
destruct (index_of_nat sz idx) eqn:Hi; repeat cleanup_step.
destruct bs. repeat cleanup_step.
rewrite N.add_comm. fold (N.b2n vhd).
rewrite N.testbit_succ_r.
apply IH; auto.
- apply index_of_nat_none_ge in Hindex.
unfold Bits.to_nat in Hindex.
assert (Bits.to_N idx >= N.of_nat sz)%N as Hle by lia.
pose proof (Bits.to_N_bounded bs).
destruct (Bits.to_N bs); [ reflexivity | ].
symmetry. apply N.bits_above_log2.
apply N.ge_le in Hle.
eapply N.lt_le_trans; [ | exact Hle].
apply N.log2_lt_pow2; lia.
Qed.
Lemma pow2_nz :
forall n, N.pow 2 n <> 0%N.
Proof. intros; apply N.pow_nonzero; lia. Qed.
Hint Resolve pow2_nz: core.
Lemma to_N_vect_unsnoc :
forall sz (x: bits (S sz)),
(Bits.to_N (snd (vect_unsnoc x)) = Bits.to_N x mod (2 ^ N.of_nat sz))%N.
Proof.
intros.
induction sz.
- simpl.
destruct x. destruct vtl. cbn.
destruct_match; reflexivity.
- pose proof pow2_nz (N.of_nat sz).
destruct x.
rewrite Nat2N.inj_succ, N.pow_succ_r'. cbn.
specialize (IHsz vtl).
destruct (vect_unsnoc vtl) eqn:H_unsnoc_vtl.
cbn in *. rewrite IHsz.
rewrite N.add_mod; [ | destruct sz; discriminate ].
rewrite (N.mod_small (if vhd then 1 else 0)).
+ rewrite (N.mod_small _ (2 * 2 ^ N.of_nat sz)).
* f_equal.
rewrite N.mul_mod_distr_l by lia;
reflexivity.
* destruct vhd.
-- rewrite N.mul_mod_distr_l by lia.
eauto using N.mul_2_mono_l, N.mod_lt.
-- apply N.mod_lt; lia.
+ destruct vhd; lia.
Qed.
Lemma to_N_lsl1 :
forall sz (x: bits sz),
(Bits.to_N (Bits.lsl1 x) =
(Bits.to_N x * 2) mod (2 ^ N.of_nat sz))%N.
Proof.
destruct sz.
- intros.
destruct x.
reflexivity.
- intros.
pose proof pow2_nz (N.of_nat sz).
rewrite Nat2N.inj_succ, N.pow_succ_r'.
cbn. rewrite (N.mul_comm _ 2).
rewrite N.mul_mod_distr_l by lia.
f_equal.
apply to_N_vect_unsnoc.
Qed.
Lemma to_N_dotimes_lsl :
forall sz n (x: bits sz),
(Bits.to_N (vect_dotimes Bits.lsl1 n x) = (Bits.to_N x * 2 ^ N.of_nat n) mod 2 ^ N.of_nat sz)%N.
Proof.
induction n as [| n IHn]; intros.
- cbn.
rewrite N.mul_1_r, N.mod_small by apply Bits.to_N_bounded.
reflexivity.
- rewrite Nat2N.inj_succ, N.pow_succ_r'.
cbn.
rewrite IHn, to_N_lsl1.
rewrite N.mul_mod_idemp_l by (pose proof pow2_nz (N.of_nat sz); lia).
f_equal. ring.
Qed.
Lemma to_N_lsl :
forall sz1 sz2 (x: bits sz1) (y: bits sz2),
(Bits.to_N (BitFuns.lsl x y) =
(Bits.to_N x * (2 ^ (Bits.to_N y))) mod (2 ^ N.of_nat sz1))%N.
Proof.
intros. unfold lsl, Bits.lsl.
rewrite <-(N2Nat.id (Bits.to_N y)).
apply to_N_dotimes_lsl.
Qed.
Lemma to_N_extend_end_false :
forall sz (x: bits sz) sz', Bits.to_N (Bits.extend_end x sz' false) = Bits.to_N x.
Proof.
intros.
unfold Bits.extend_end.
rewrite Bits.to_N_rew, Bits.to_N_app, Bits.to_N_zeroes, N.mul_0_l, N.add_0_l.
reflexivity.
Qed.
End Arithmetic.