-
Notifications
You must be signed in to change notification settings - Fork 12
/
OneRuleAtATime.v
294 lines (271 loc) · 9.73 KB
/
OneRuleAtATime.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
(*! ORAAT | Proof of the One-rule-at-a-time theorem !*)
Require Import
Koika.Common Koika.Syntax Koika.TypedSyntax
Koika.TypedSyntaxFunctions Koika.SemanticProperties.
Require Import Coq.setoid_ring.Ring_theory Coq.setoid_ring.Ring Coq.setoid_ring.Ring.
Open Scope bool_scope.
Section Proof.
Context {pos_t var_t fn_name_t rule_name_t reg_t ext_fn_t: Type}.
Context {reg_t_eq_dec: EqDec reg_t}.
Context {R: reg_t -> type}.
Context {Sigma: ext_fn_t -> ExternalSignature}.
Context {REnv: Env reg_t}.
Context (r: REnv.(env_t) R).
Context (sigma: forall f, Sig_denote (Sigma f)).
Notation Log := (Log R REnv).
Notation action := (action pos_t var_t fn_name_t R Sigma).
Notation rule := (rule pos_t var_t fn_name_t R Sigma).
Notation scheduler := (scheduler pos_t rule_name_t).
Context (rules: rule_name_t -> rule).
Fixpoint interp_scheduler'_trace
(sched_log: Log)
(s: scheduler)
{struct s} :=
let interp_try rl s1 s2 :=
match interp_rule r sigma sched_log (rules rl) with
| Some l => match interp_scheduler'_trace (log_app l sched_log) s1 with
| Some (rs, log) => Some (rl :: rs, log)
| None => None
end
| None => interp_scheduler'_trace sched_log s2
end in
match s with
| Done => Some ([], sched_log)
| Cons rl s => interp_try rl s s
| Try rl s1 s2 => interp_try rl s1 s2
| SPos _ s => interp_scheduler'_trace sched_log s
end.
Definition interp_scheduler_trace_and_update
l
(s: scheduler) :=
match interp_scheduler'_trace l s with
| Some (rs, log) => Some (rs, commit_update r log)
| None => None
end.
Definition interp_oraat r rl: REnv.(env_t) R :=
interp_cycle sigma rules (Try rl Done Done) r.
Ltac set_forallb_fns :=
repeat match goal with
| [ |- context[log_forallb _ _ ?fn] ] =>
match fn with
| (fun _ => _) => set fn
end
end.
Lemma may_read_app_sl :
forall (sl sl': Log) prt idx,
may_read (log_app sl sl') prt idx =
may_read sl prt idx && may_read sl' prt idx.
Proof.
unfold may_read; intros.
destruct prt; rewrite !log_forallb_not_existsb, !log_forallb_app;
ring_simplify; f_equal.
Qed.
Lemma may_write_app_sl :
forall (sl sl': Log) l prt idx,
may_write (log_app sl sl') l prt idx =
may_write sl l prt idx && may_write sl' l prt idx.
Proof.
unfold may_write; intros.
destruct prt; rewrite !log_forallb_not_existsb, !log_forallb_app;
ring_simplify;
repeat (destruct (log_forallb _ _ _); cbn; try reflexivity).
Qed.
Ltac bool_step :=
match goal with
| _ => progress Common.bool_step
| [ H: log_forallb (log_app _ _) _ _ = _ |- _ ] =>
rewrite log_forallb_app in H
end.
Lemma may_read0_no_writes :
forall (sl: Log) idx,
may_read sl P0 idx = true ->
latest_write sl idx = None.
Proof.
unfold may_read; intros.
rewrite !log_forallb_not_existsb in H.
repeat (cleanup_step || bool_step).
unfold log_forallb in *.
rewrite forallb_forall in *.
unfold is_write0, is_write1, latest_write, log_find in *.
apply find_none_notb.
intros a HIn.
repeat match goal with
| [ H: forall (_: LogEntry _), _ |- _ ] => specialize (H a HIn)
end.
destruct a; cbn in *; destruct kind; subst; try reflexivity.
destruct port; cbn in *; try discriminate.
Qed.
Lemma may_read1_latest_write_is_0 :
forall (l: Log) idx,
may_read l P1 idx = true ->
latest_write l idx = latest_write0 l idx.
Proof.
unfold may_read, latest_write, latest_write0, log_find, log_forallb.
intros * H.
rewrite log_forallb_not_existsb in H; unfold log_forallb in H.
set (getenv REnv l idx) as ls in *; cbn in *; clearbody ls.
set (R idx) as t in *; cbn in *.
revert H.
induction ls.
- reflexivity.
- intros * H; cbn in H.
repeat (bool_step || cleanup_step).
rewrite (IHls ltac:(eassumption)).
unfold log_latest_write_fn; cbn.
destruct a, kind, port; try discriminate; reflexivity.
Qed.
Create HintDb oraat.
Hint Unfold interp_cycle : oraat.
Hint Unfold interp_oraat : oraat.
Hint Unfold interp_rule : oraat.
Ltac t_step :=
match goal with
| _ => cleanup_step
| _ => progress autounfold with oraat in *
| [ H: context[may_read (log_app _ _) _ _] |- _ ] =>
rewrite may_read_app_sl in H
| [ H: context[may_write (log_app _ _) _ _ _] |- _ ] =>
rewrite may_write_app_sl in H
| [ H: Some _ = Some _ |- _ ] =>
inversion H; subst; clear H
| [ H: opt_bind ?x _ = Some _ |- _ ] =>
destruct x eqn:?; cbn in H; try discriminate
| [ H: match ?x with _ => _ end = Some _ |- _ ] =>
destruct x eqn:?; subst; cbn in H; try discriminate
| _ =>
bool_step
| [ H: match ?x with _ => _ end = ?c |- _ ] =>
let c_hd := constr_hd c in
is_constructor c_hd; destruct x eqn:?
| [ H: ?x = _ |- context[match ?x with _ => _ end] ] =>
rewrite H
| [ H: context[_ -> _ = Some _] |- _ ] =>
erewrite H by eauto
| _ => reflexivity
end.
Ltac t :=
repeat t_step.
Lemma interp_action_commit:
forall {sig tau} (a: action sig tau) (Gamma: tcontext sig) (sl sl': Log) action_log lv,
interp_action r sigma Gamma (log_app sl sl') action_log a = Some lv ->
interp_action (commit_update r sl') sigma Gamma sl action_log a = Some lv.
Proof.
fix IH 3; destruct a; cbn;
intros Gamma sl sl' action_log lv HSome; try congruence.
- (* Assign *) t.
- (* Seq *) t.
- (* Bind *) t.
- (* If *) t.
- destruct port; t.
+ (* Read0 *)
erewrite getenv_commit_update by eassumption.
erewrite may_read0_no_writes by eauto.
reflexivity.
+ (* Read1 *)
rewrite log_app_assoc.
rewrite (latest_write0_app (log_app action_log sl) sl').
destruct latest_write0.
* reflexivity.
* erewrite getenv_commit_update by eassumption.
rewrite may_read1_latest_write_is_0 by eassumption.
reflexivity.
- (* Write *) t.
- (* UnOp *) t.
- (* BinOp *) t.
- (* ExternalCall *) t.
- (* InternalCall *)
assert (let interp_action r sigma :=
@interp_action pos_t var_t fn_name_t reg_t ext_fn_t R Sigma REnv r sigma in
forall argspec (args: acontext sig argspec) (Gamma: tcontext sig) (sl sl': Log) action_log lv,
interp_args' (interp_action r sigma) Gamma (log_app sl sl') action_log args = Some lv ->
interp_args' (interp_action (commit_update r sl') sigma) Gamma sl action_log args = Some lv).
{ clear -IH; intro.
fix IHargs 2; destruct args; cbn;
intros Gamma sl sl' action_log lv **.
+ t.
+ t. }
t.
- (* APos *) t.
Qed.
Lemma OneRuleAtATime':
forall s rs r' l0,
interp_scheduler_trace_and_update l0 s = Some (rs, r') ->
List.fold_left interp_oraat rs (commit_update r l0) = r'.
Proof.
induction s; cbn;
unfold interp_scheduler_trace_and_update; cbn.
- (* Done *) inversion 1; subst; cbn in *; eauto.
- (* Cons *) intros; t.
+ erewrite interp_action_commit by (rewrite log_app_empty_r; eassumption);
cbn.
rewrite log_app_empty_l.
rewrite commit_update_assoc.
eapply IHs.
unfold interp_scheduler_trace_and_update.
rewrite Heqo1; reflexivity.
+ eapply IHs.
unfold interp_scheduler_trace_and_update; rewrite Heqo.
reflexivity.
- (* Try *) intros; t.
+ erewrite interp_action_commit by (rewrite log_app_empty_r; eassumption);
cbn.
rewrite log_app_empty_l.
rewrite commit_update_assoc.
eapply IHs1.
unfold interp_scheduler_trace_and_update.
rewrite Heqo1; reflexivity.
+ eapply IHs2.
unfold interp_scheduler_trace_and_update; rewrite Heqo.
reflexivity.
- (* SPos *) eauto.
Qed.
Lemma interp_scheduler_trace_correct :
forall s l0 log,
interp_scheduler' r sigma rules l0 s = log ->
exists rs, interp_scheduler'_trace l0 s = Some (rs, log).
Proof.
induction s; cbn.
- (* Done *) inversion 1; subst; eauto.
- (* Cons *) intros * Heq. destruct interp_rule as [log' | ] eqn:?.
+ destruct (IHs _ _ Heq) as (rs & Heq').
rewrite Heq'; eauto.
+ destruct (IHs _ _ Heq) as (rs & Heq').
rewrite Heq'; eauto.
- (* Try *) intros * Heq. destruct interp_rule as [log' | ] eqn:?.
+ destruct (IHs1 _ _ Heq) as (rs & Heq').
rewrite Heq'; eauto.
+ destruct (IHs2 _ _ Heq) as (rs & Heq').
rewrite Heq'; eauto.
- (* SPos *) eauto.
Qed.
Lemma scheduler_trace_in_scheduler :
forall s log l0 rs,
interp_scheduler'_trace l0 s = Some (rs, log) ->
(forall r : rule_name_t, In r rs -> In r (scheduler_rules s)).
Proof.
induction s; cbn in *.
- (* Done *) inversion 1; subst; inversion 1.
- (* Cons *) intros * H * H'; t.
+ inversion H'; subst; eauto.
+ eauto.
- (* Try *) intros * H * H'; rewrite in_app_iff; t.
+ inversion H'; subst; eauto.
+ eauto.
- (* SPos *) eauto.
Qed.
Theorem OneRuleAtATime:
forall s log,
interp_scheduler r sigma rules s = log ->
exists rs,
(forall rl, List.In rl rs -> List.In rl (scheduler_rules s)) /\
List.fold_left interp_oraat rs r = commit_update r log.
Proof.
intros * H.
apply interp_scheduler_trace_correct in H; destruct H as (rs & H).
exists rs; split.
- eauto using scheduler_trace_in_scheduler.
- rewrite <- (commit_update_empty r) at 1.
eapply OneRuleAtATime'.
unfold interp_scheduler_trace_and_update; rewrite H; reflexivity.
Qed.
End Proof.