-
Notifications
You must be signed in to change notification settings - Fork 12
/
IndexUtils.v
151 lines (135 loc) · 4.24 KB
/
IndexUtils.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
(*! Utilities | Functions on Vect.index elements !*)
Require Coq.Logic.FinFun.
Require Import Koika.Common Koika.Member.
Require Export Koika.Vect.
Fixpoint all_indices (bound: nat) : vect (index bound) bound :=
match bound as n return (vect (index n) n) with
| 0 => vect_nil
| S bound => vect_cons thisone (vect_map anotherone (all_indices bound))
end.
Fixpoint all_indices_eqn bound:
forall idx, vect_nth (all_indices bound) idx = idx.
Proof.
destruct bound, idx; cbn.
- reflexivity.
- rewrite vect_nth_map.
rewrite all_indices_eqn.
reflexivity.
Defined.
Lemma all_indices_NoDup bound:
vect_NoDup (all_indices bound).
Proof.
induction bound; cbn; econstructor.
- intro.
apply vect_to_list_In in H.
apply vect_map_In_ex in H.
destruct H as [t (? & ?)]; discriminate.
- setoid_rewrite vect_to_list_map.
apply FinFun.Injective_map_NoDup.
+ red; inversion 1; reflexivity.
+ eassumption.
Qed.
Lemma all_indices_surjective bound:
forall idx, member idx (vect_to_list (all_indices bound)).
Proof.
intros.
eapply nth_member.
rewrite vect_to_list_nth.
f_equal.
apply all_indices_eqn.
Defined.
Instance FiniteType_index {n} : FiniteType (Vect.index n).
Proof.
refine {| finite_index := index_to_nat;
finite_elements := vect_to_list (all_indices n) |}.
- intros; rewrite vect_to_list_nth, all_indices_eqn; reflexivity.
- apply FinFun.Injective_map_NoDup.
red; apply index_to_nat_injective.
apply all_indices_NoDup.
Defined.
Fixpoint Vector_find {K: Type} {n: nat} {EQ: EqDec K} (k: K) (v: Vector.t K n) {struct n} : option (Vect.index n).
Proof.
destruct n.
- exact None.
- destruct (eq_dec k (Vector.hd v)).
+ exact (Some thisone).
+ destruct (Vector_find K n EQ k (Vector.tl v)).
* exact (Some (anotherone i)).
* exact None.
Defined.
Fixpoint Vector_assoc {K V: Type} {n: nat} {EQ: EqDec K} (k: K) (v: Vector.t (K * V) n) {struct n} : option (Vect.index n).
Proof.
destruct n.
- exact None.
- destruct (eq_dec k (fst (Vector.hd v))).
+ exact (Some thisone).
+ destruct (Vector_assoc K V n EQ k (Vector.tl v)).
* exact (Some (anotherone i)).
* exact None.
Defined.
Fixpoint List_assoc {K V: Type} {EQ: EqDec K} (k: K) (l: list (K * V)) {struct l} : option (Vect.index (List.length l)).
Proof.
destruct l as [| h l].
- exact None.
- destruct (eq_dec k (fst h)).
+ exact (Some thisone).
+ destruct (List_assoc K V EQ k l).
* exact (Some (anotherone i)).
* exact None.
Defined.
Fixpoint Vector_nth {K: Type} {n: nat} (v: Vector.t K n) (idx: Vect.index n) {struct n} : K.
Proof.
destruct n; destruct idx.
- exact (Vector.hd v).
- exact (Vector_nth K n (Vector.tl v) a).
Defined.
Fixpoint List_nth {K: Type} (l: list K) (idx: Vect.index (List.length l)) {struct l} : K.
Proof.
destruct l as [| h l]; destruct idx.
- exact h.
- exact (List_nth K l a).
Defined.
Fixpoint List_nth_map_cast {A B} (f: A -> B) l:
List.length l = List.length (List.map f l).
Proof. destruct l; cbn; auto. Defined.
Lemma List_nth_map {A B} (f: A -> B):
forall l idx,
f (List_nth l idx) =
List_nth (List.map f l)
ltac:(rewrite <- List_nth_map_cast; exact idx).
Proof.
induction l; destruct idx; cbn;
set (List_nth (List.map f l)) as x in *; clearbody x.
- set (List_nth_map_cast _ _) as Heq in *; clearbody Heq.
destruct Heq; reflexivity.
- rewrite IHl; clear.
set (List_nth_map_cast _ _) as Heq in *; clearbody Heq.
destruct Heq; reflexivity.
Qed.
Lemma List_nth_firstn_1_skipn {A} (l: list A) a:
List.firstn 1 (List.skipn (index_to_nat a) l) =
[List_nth l a].
Proof.
induction l; destruct a; cbn.
- reflexivity.
- specialize (IHl a).
destruct (skipn _ _); inversion IHl; reflexivity.
Qed.
Lemma List_nth_skipn_cons_next {A}:
forall (l: list A) idx,
List_nth l idx :: (List.skipn (S (index_to_nat idx)) l) =
List.skipn (index_to_nat idx) l.
Proof.
induction l; destruct idx; cbn; try rewrite IHl; reflexivity.
Qed.
Lemma list_sum_member_le:
forall l idx,
List_nth l idx <=
list_sum l.
Proof.
induction l; destruct idx.
- cbn; lia.
- specialize (IHl a0); unfold list_sum, list_sum' in *; cbn; lia.
Qed.
Instance Show_index (n: nat) : Show (index n) :=
{ show x := show (index_to_nat x) }.