-
Notifications
You must be signed in to change notification settings - Fork 12
/
Environments.v
520 lines (450 loc) · 17.8 KB
/
Environments.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
(*! Utilities | Environments used to track variable bindings !*)
Require Import Koika.Common.
Require Export Koika.Member.
Section Contexts.
Context {K: Type}.
Context {V: K -> Type}.
Inductive context: forall (sig: list K), Type :=
| CtxEmpty: context []
| CtxCons {sig} (k: K) (v: V k) (ctx: context sig): context (k :: sig).
Definition cdestruct {sig} (ctx: context sig)
: match sig return context sig -> Type with
| [] => fun ctx => ctx = CtxEmpty
| k :: sig => fun ctx => { vs: V k * context sig | ctx = CtxCons k (fst vs) (snd vs) }
end ctx.
destruct ctx.
- reflexivity.
- exists (v, ctx); reflexivity.
Defined.
Definition chd {k sig} (ctx: context (k :: sig)) : V k :=
match ctx in (context sig')
return match sig' with [] => unit | k :: _ => V k end with
| CtxEmpty => tt
| CtxCons _ v _ => v
end.
Definition ctl {k sig} (ctx: context (k :: sig)) : context sig :=
match ctx in (context sig')
return match sig' with [] => unit | _ :: sig => context sig end with
| CtxEmpty => tt
| CtxCons _ _ ctx' => ctx'
end.
Lemma ceqn {sig} (ctx: context sig)
: match sig with
| [] => fun ctx => ctx = CtxEmpty
| k :: sig => fun ctx => ctx = CtxCons k (chd ctx) (ctl ctx)
end ctx.
Proof. destruct ctx; reflexivity. Defined.
Fixpoint ccreate (sig: list K) (f: forall k, member k sig -> V k) : context sig :=
match sig return (forall k, member k sig -> V k) -> context sig with
| nil => fun _ => CtxEmpty
| cons h t => fun f => CtxCons h (f h (MemberHd h t))
(ccreate t (fun k m => f k (MemberTl k h t m)))
end f.
Fixpoint cassoc {sig} {k} (m: member k sig)
(ctx: context sig) {struct m} : V k :=
match m in (member y l) return (context l -> V y) with
| MemberHd k sig => fun ctx => chd ctx
| MemberTl k k' sig m => fun ctx => cassoc m (ctl ctx)
end ctx.
Lemma cassoc_ccreate {sig} (f: forall k, _ -> V k) {k} (m: member k sig) :
cassoc m (ccreate sig f) = f k m.
Proof.
induction sig; cbn.
- pose proof (mdestruct m) as Hd; elim Hd.
- pose proof (mdestruct m) as [(eqn & Heq) | (m' & Heq)].
+ destruct eqn; cbn in *; rewrite Heq.
reflexivity.
+ rewrite Heq; cbn.
apply IHsig.
Qed.
Lemma ccreate_funext {sig} (f1 f2: forall k, _ -> V k):
(forall k m, f1 k m = f2 k m) ->
ccreate sig f1 = ccreate sig f2.
Proof.
induction sig; cbn.
- intros; reflexivity.
- intros Heq; rewrite Heq; eauto using f_equal.
Qed.
Lemma ccreate_cassoc {sig} (ctx: context sig):
ccreate sig (fun k m => cassoc m ctx) = ctx.
Proof.
induction sig; cbn; intros.
- rewrite (ceqn ctx).
reflexivity.
- rewrite (ceqn ctx); cbn.
rewrite IHsig; reflexivity.
Qed.
Fixpoint creplace {sig} {k} (m: member k sig) (v: V k)
(ctx: context sig) {struct m} : context sig.
destruct m.
- eapply (CtxCons k v (ctl ctx)).
- eapply (CtxCons k' (chd ctx) (creplace sig k m v (ctl ctx))).
Defined.
Lemma cassoc_creplace_eq {sig} :
forall (ctx: context sig) {k} (m: member k sig) (v: V k),
cassoc m (creplace m v ctx) = v.
Proof.
induction m; cbn; intros.
- reflexivity.
- rewrite IHm; reflexivity.
Qed.
Lemma cassoc_creplace_neq_idx {sig} :
forall (ctx: context sig) {k k'} (m: member k sig) (m': member k' sig) (v: V k),
member_idx m <> member_idx m' ->
cassoc m' (creplace m v ctx) = cassoc m' ctx.
Proof.
induction m; cbn; intros; rewrite (ceqn ctx).
- destruct (mdestruct m') as [ (-> & Heq) | (m'' & Heq)]; subst; cbn in *; subst; cbn in *.
+ congruence.
+ reflexivity.
- destruct (mdestruct m') as [ (-> & Heq) | (m'' & Heq)]; subst; cbn in *; subst; cbn in *.
+ reflexivity.
+ rewrite IHm; eauto.
Qed.
Lemma cassoc_creplace_neq_k {sig} :
forall (ctx: context sig) {k k'} (m: member k sig) (m': member k' sig) (v: V k),
k <> k' ->
cassoc m' (creplace m v ctx) = cassoc m' ctx.
Proof.
eauto using cassoc_creplace_neq_idx, member_idx_inj_k_contra.
Qed.
Global Instance EqDec_member sig (k: K) {EQ: EqDec K} : EqDec (member k sig).
Proof.
econstructor.
induction sig; intros m1 m2.
- destruct (mdestruct m1).
- destruct (mdestruct m1) as [(-> & Heq) | (m1' & Heq)]; subst; cbn in *; subst; cbn;
destruct (mdestruct m2) as [(eqn & Heq) | (m2' & Heq)];
try (rewrite <- Eqdep_dec.eq_rect_eq_dec in Heq by apply eq_dec);
unfold eq_type in *; subst; cbn in *; subst.
+ left; reflexivity.
+ right; intro; discriminate.
+ right; intro; discriminate.
+ destruct (IHsig m1' m2'); subst.
* left; reflexivity.
* right; intro; inversion H as [H'].
apply Eqdep_dec.inj_pair2_eq_dec in H'; try apply eq_dec.
apply Eqdep_dec.inj_pair2_eq_dec in H'; try apply eq_dec.
eauto.
Defined.
Lemma cassoc_creplace_neq_members {sig} {EQ:EqDec K} :
forall (ctx: context sig) {k } (m: member k sig) (m': member k sig) (v: V k),
m <> m' ->
cassoc m' (creplace m v ctx) = cassoc m' ctx.
Proof.
induction m; cbn; intros; rewrite (ceqn ctx).
-
destruct (mdestruct m') as [ (eqn & Heq) | (m'' & Heq)]; rewrite Heq in *.
+ rewrite <- Eqdep_dec.eq_rect_eq_dec in H by apply eq_dec.
congruence.
+ reflexivity.
-
destruct (mdestruct m') as [ (eqn & Heq) | (m'' & Heq)]; subst; cbn in *; subst; cbn.
+ rewrite Heq in *. destruct eqn. reflexivity.
+ rewrite IHm; intuition congruence.
Qed.
Fixpoint capp {sig sig'} (ctx: context sig) (ctx': context sig'): context (sig ++ sig') :=
match sig return context sig -> context (sig ++ sig') with
| [] => fun _ => ctx'
| k :: sig => fun ctx => CtxCons k (chd ctx) (capp (ctl ctx) ctx')
end ctx.
Fixpoint capp_nil_r {A} (l: list A) {struct l}:
l ++ [] = l.
Proof. destruct l; cbn; [ | f_equal ]; eauto. Defined.
Lemma capp_empty:
forall {sig} (ctx: context sig),
capp ctx CtxEmpty =
rew <- capp_nil_r sig in ctx.
Proof.
induction ctx; cbn.
- reflexivity.
- rewrite IHctx.
rewrite eq_trans_refl_l.
unfold eq_rect_r.
rewrite eq_sym_map_distr.
rewrite <- rew_map.
destruct (eq_sym _); reflexivity.
Qed.
Fixpoint csplit {sig sig'} (ctx: context (sig ++ sig')): (context sig * context sig') :=
match sig return context (sig ++ sig') -> (context sig * context sig') with
| [] => fun ctx => (CtxEmpty, ctx)
| k :: sig => fun ctx =>
let split := csplit (ctl ctx) in
(CtxCons k (chd ctx) (fst split), (snd split))
end ctx.
Lemma csplit_capp :
forall {sig sig'} (ctx: context sig) (ctx': context sig'),
csplit (capp ctx ctx') = (ctx, ctx').
Proof.
induction sig; cbn; intros; rewrite (ceqn ctx).
- reflexivity.
- rewrite IHsig; reflexivity.
Qed.
Definition infix_context {infix} (ctx': context infix)
{sig sig'} (ctx: context (sig ++ sig')) :=
capp (fst (csplit ctx)) (capp ctx' (snd (csplit ctx))).
Lemma cassoc_mprefix:
forall {k prefix sig} (m: member k sig)
(ctx: context sig) (ctx': context prefix),
cassoc (mprefix prefix m) (capp ctx' ctx) = cassoc m ctx.
Proof. induction prefix; cbn; eauto. Qed.
Lemma cassoc_minfix:
forall {k sig sig'} (m: member k (sig ++ sig')) {infix}
(ctx: context (sig ++ sig')) (ctx': context infix),
cassoc (minfix infix m) (infix_context ctx' ctx) = cassoc m ctx.
Proof.
induction sig; cbn; intros.
- apply cassoc_mprefix.
- destruct (mdestruct m) as [(eqn & Heq) | (m' & Heq)];
[ destruct eqn | ]; cbn in *; subst; rewrite (ceqn ctx).
+ reflexivity.
+ setoid_rewrite IHsig; reflexivity.
Qed.
Lemma creplace_mprefix:
forall {k prefix sig} (m: member k sig)
(ctx: context sig) (ctx': context prefix)
(v : V k),
creplace (mprefix prefix m) v (capp ctx' ctx) =
capp ctx' (creplace m v ctx).
Proof. induction prefix; cbn; eauto using f_equal. Qed.
Lemma creplace_minfix:
forall {k sig sig'} (m: member k (sig ++ sig')) {infix}
(ctx: context (sig ++ sig')) (ctx': context infix) v,
creplace (minfix infix m) v (infix_context ctx' ctx) =
(infix_context ctx' (creplace m v ctx)).
Proof.
induction sig; cbn; intros.
- apply creplace_mprefix.
- destruct (mdestruct m) as [(eqn & Heq) | (m' & Heq)];
[ destruct eqn | ]; cbn in *; subst; rewrite (ceqn ctx).
+ reflexivity.
+ setoid_rewrite IHsig; reflexivity.
Qed.
Lemma capp_as_infix':
forall {sig sig'} (ctx: context sig) (ctx': context sig'),
(rew <- [fun sig' => context (sig ++ sig')] capp_nil_r sig' in capp ctx ctx') =
infix_context ctx' (rew <- capp_nil_r sig in ctx).
Proof.
unfold infix_context; intros.
rewrite <- capp_empty.
rewrite !csplit_capp; cbn.
rewrite capp_empty.
unfold eq_rect_r; cbn.
destruct (eq_sym _); reflexivity.
Qed.
Lemma capp_as_infix:
forall {sig sig'} (ctx: context sig) (ctx': context sig'),
capp ctx ctx' =
(rew [fun sig' => context (sig ++ sig')] capp_nil_r sig' in
infix_context ctx' (rew <- capp_nil_r sig in ctx)).
Proof.
intros; rewrite <- capp_as_infix', rew_opp_r; reflexivity.
Qed.
End Contexts.
Arguments context {K} V sig : assert.
Section Maps.
Context {K K': Type}.
Context {V: K -> Type} {V': K' -> Type}.
Context (fK: K -> K').
Context (fV: forall k, V k -> V' (fK k)).
Fixpoint cmap {sig} (ctx: context V sig) {struct ctx} : context V' (List.map fK sig) :=
match ctx in context _ sig return context V' (List.map fK sig) with
| CtxEmpty => CtxEmpty
| CtxCons k v ctx => CtxCons (fK k) (fV k v) (cmap ctx)
end.
Lemma cmap_creplace :
forall {sig} (ctx: context V sig) {k} (m: member k sig) v,
cmap (creplace m v ctx) =
creplace (member_map fK m) (fV k v) (cmap ctx).
Proof.
induction ctx; cbn; intros.
- destruct (mdestruct m).
- destruct (mdestruct m) as [(-> & ->) | (? & ->)]; cbn in *.
+ reflexivity.
+ rewrite IHctx; reflexivity.
Qed.
Lemma cmap_cassoc :
forall {sig} (ctx: context V sig) {k} (m: member k sig),
cassoc (member_map fK m) (cmap ctx) =
fV k (cassoc m ctx).
Proof.
induction ctx; cbn; intros.
- destruct (mdestruct m).
- destruct (mdestruct m) as [(-> & ->) | (? & ->)]; cbn in *.
+ reflexivity.
+ rewrite IHctx; reflexivity.
Qed.
Lemma cmap_ctl :
forall {k sig} (ctx: context V (k :: sig)),
cmap (ctl ctx) = ctl (cmap ctx).
Proof.
intros; rewrite (ceqn ctx); reflexivity.
Qed.
End Maps.
Section ValueMaps.
Context {K: Type}.
Context {V: K -> Type} {V': K -> Type}.
Context (fV: forall k, V k -> V' k).
Fixpoint cmapv {sig} (ctx: context V sig) {struct ctx} : context V' sig :=
match ctx in context _ sig return context V' sig with
| CtxEmpty => CtxEmpty
| CtxCons k v ctx => CtxCons k (fV k v) (cmapv ctx)
end.
Lemma cmapv_creplace :
forall {sig} (ctx: context V sig) {k} (m: member k sig) v,
cmapv (creplace m v ctx) =
creplace m (fV k v) (cmapv ctx).
Proof.
induction ctx; cbn; intros.
- destruct (mdestruct m).
- destruct (mdestruct m) as [(-> & ->) | (? & ->)]; cbn in *.
+ reflexivity.
+ rewrite IHctx; reflexivity.
Qed.
Lemma cmapv_cassoc :
forall {sig} (ctx: context V sig) {k} (m: member k sig),
cassoc m (cmapv ctx) =
fV k (cassoc m ctx).
Proof.
induction ctx; cbn; intros.
- destruct (mdestruct m).
- destruct (mdestruct m) as [(-> & ->) | (? & ->)]; cbn in *.
+ reflexivity.
+ rewrite IHctx; reflexivity.
Qed.
Lemma cmapv_ctl :
forall {k sig} (ctx: context V (k :: sig)),
cmapv (ctl ctx) = ctl (cmapv ctx).
Proof.
intros; rewrite (ceqn ctx); reflexivity.
Qed.
End ValueMaps.
Section Folds.
Context {K: Type}.
Context {V: K -> Type}.
Section foldl.
Context {T: Type}.
Context (f: forall (k: K) (v: V k) (acc: T), T).
Fixpoint cfoldl {sig} (ctx: context V sig) (init: T) :=
match ctx with
| CtxEmpty => init
| CtxCons k v ctx => cfoldl ctx (f k v init)
end.
Definition cfoldl' {sig} (ctx: context V sig) (init: T) :=
match sig return context V sig -> T with
| [] => fun _ => init
| k :: sig => fun ctx => cfoldl (ctl ctx) (f k (chd ctx) init)
end ctx.
End foldl.
Section foldr.
Context {T: list K -> Type}.
Context (f: forall (sg: list K) (k: K) (v: V k), T sg -> T (k :: sg)).
Fixpoint cfoldr {sig} (ctx: context V sig) (init: T []) :=
match ctx with
| CtxEmpty => init
| CtxCons k v ctx => f _ k v (cfoldr ctx init)
end.
Fixpoint cfoldr' {sig} (ctx: context V sig) (init: T []) :=
match sig return context V sig -> T sig with
| [] => fun _ => init
| k :: sig => fun ctx => f sig k (chd ctx) (cfoldr' (ctl ctx) init)
end ctx.
End foldr.
End Folds.
Notation esig K := (forall k: K, Type).
Record Env {K: Type} :=
{ env_t: forall (V: esig K), Type;
getenv: forall {V: esig K}, env_t V -> forall k, V k;
putenv: forall {V: esig K}, env_t V -> forall k, V k -> env_t V;
create: forall {V: esig K} (fn: forall (k: K), V k), env_t V;
finite_keys: FiniteType K;
create_getenv_id: forall {V: esig K} (ev: env_t V),
create (getenv ev) = ev; (* Not strictly needed *)
create_funext: forall {V: esig K} (fn1 fn2: forall k : K, V k),
(forall k, fn1 k = fn2 k) -> create fn1 = create fn2;
getenv_create: forall {V: esig K} (fn: forall k : K, V k) k,
getenv (create fn) k = fn k;
get_put_eq: forall {V: esig K} (ev: env_t V) k v,
getenv (putenv ev k v) k = v;
get_put_neq: forall {V: esig K} (ev: env_t V) k k' v,
k <> k' -> getenv (putenv ev k v) k' = getenv ev k' }.
Arguments Env: clear implicits.
Arguments getenv K e V / !env.
Arguments putenv K e V / !env.
Definition equiv {K} (E: Env K) {V: esig K} (ev1 ev2: E.(env_t) V) :=
forall k: K, E.(getenv) ev1 k = E.(getenv) ev2 k.
Lemma equiv_refl {K} (E: Env K) {V: esig K} (ev: E.(env_t) V) :
equiv E ev ev.
Proof. firstorder. Qed.
Lemma equiv_eq {K} (E: Env K) {V: esig K} (ev1 ev2: E.(env_t) V) :
equiv E ev1 ev2 ->
ev1 = ev2.
Proof.
intros.
rewrite <- (E.(create_getenv_id) ev1), <- (E.(create_getenv_id) ev2).
apply create_funext; assumption.
Qed.
Definition update {K} (E: Env K) {V: esig K}
(ev: E.(env_t) V) (k: K) (fn: V k -> V k) : E.(env_t) V :=
E.(putenv) ev k (fn (E.(getenv) ev k)).
Definition map {K} (E: Env K) {V1 V2: esig K} (fn: forall k, V1 k -> V2 k)
(ev1: E.(env_t) V1) : E.(env_t) V2 :=
E.(create) (fun k => fn k (E.(getenv) ev1 k)).
Lemma getenv_map {K} (E: Env K) {V1 V2: esig K} (fn: forall k, V1 k -> V2 k) :
forall ev k, E.(getenv) (map E fn ev) k = fn k (E.(getenv) ev k).
Proof. intros; unfold map; rewrite getenv_create; reflexivity. Qed.
Definition zip {K} (E: Env K) {V1 V2: esig K} (ev1: E.(env_t) V1) (ev2: E.(env_t) V2)
: E.(env_t) (fun k => V1 k * V2 k)%type :=
E.(create) (fun k => (E.(getenv) ev1 k, E.(getenv) ev2 k)).
Lemma getenv_zip {K} (E: Env K) {V1 V2: esig K} (ev1: E.(env_t) V1) (ev2: E.(env_t) V2) k :
E.(getenv) (zip E ev1 ev2) k = (E.(getenv) ev1 k, E.(getenv) ev2 k).
Proof.
unfold zip; rewrite getenv_create; reflexivity.
Qed.
Definition unzip {K} (E: Env K) {V1 V2: esig K} (ev: E.(env_t) (fun k => V1 k * V2 k)%type)
: (E.(env_t) V1 * E.(env_t) V2) :=
(E.(create) (fun k => fst (E.(getenv) ev k)),
E.(create) (fun k => snd (E.(getenv) ev k))).
Lemma getenv_unzip_1 {K} (E: Env K) {V1 V2: esig K} (ev: E.(env_t) (fun k => V1 k * V2 k)%type) k :
E.(getenv) (fst (unzip E ev)) k = fst (E.(getenv) ev k).
Proof.
unfold unzip; cbn; rewrite getenv_create; reflexivity.
Qed.
Lemma getenv_unzip_2 {K} (E: Env K) {V1 V2: esig K} (ev: E.(env_t) (fun k => V1 k * V2 k)%type) k :
E.(getenv) (snd (unzip E ev)) k = snd (E.(getenv) ev k).
Proof.
unfold unzip; cbn; rewrite getenv_create; reflexivity.
Qed.
Definition map2 {K} (E: Env K) {V1 V2 V3: esig K} (fn: forall k, V1 k -> V2 k -> V3 k)
(ev1: E.(env_t) V1) (ev2: E.(env_t) V2)
: E.(env_t) V3 :=
E.(create) (fun k => fn k (E.(getenv) ev1 k) (E.(getenv) ev2 k)).
Lemma getenv_map2 {K} (E: Env K) {V1 V2 V3: esig K} (fn: forall k, V1 k -> V2 k -> V3 k) :
forall ev1 ev2 k, E.(getenv) (map2 E fn ev1 ev2) k = fn k (E.(getenv) ev1 k) (E.(getenv) ev2 k).
Proof. intros; unfold map2; rewrite getenv_create; reflexivity. Qed.
Definition fold_right {K} (E: Env K) {V T} (f: forall k: K, V k -> T -> T) (ev: E.(env_t) V) (t0: T) :=
List.fold_right (fun (k: K) (t: T) => f k (E.(getenv) ev k) t) t0 (@finite_elements K E.(finite_keys)).
Definition to_list {K} (E: Env K) {V} (ev: E.(env_t) V) :=
fold_right E (fun (k: K) (v: V k) (t: list { k: K & V k }) =>
(existT _ k v) :: t) ev List.nil.
Definition to_alist {K} (E: Env K) {V} (ev: E.(env_t) (fun _ => V)) :=
fold_right E (fun (k: K) (v: V) (t: list (K * V)) => (k, v) :: t) ev List.nil.
Definition finite_member {T} {FT: FiniteType T} (t: T) :
member t finite_elements.
Proof.
eapply nth_member.
apply finite_surjective.
Defined.
Definition ContextEnv {K} {FT: FiniteType K}: Env K.
unshelve refine {| env_t V := context V finite_elements;
getenv {V} ctx k := cassoc (finite_member k) ctx;
putenv {V} ctx k v := creplace (finite_member k) v ctx;
create {V} fn := ccreate finite_elements (fun k _ => fn k) |}.
- intros; rewrite <- ccreate_cassoc; apply ccreate_funext.
intros; f_equal; apply member_NoDup; try typeclasses eauto; apply finite_nodup.
- intros; apply ccreate_funext; eauto.
- intros; apply cassoc_ccreate.
- intros; apply cassoc_creplace_eq.
- intros; apply cassoc_creplace_neq_k; eassumption.
Defined.
Notation "env .[ idx ]" := (getenv ContextEnv env idx) (at level 1, format "env .[ idx ]").