-
Notifications
You must be signed in to change notification settings - Fork 12
/
CircuitCorrectness.v
1611 lines (1466 loc) · 62.8 KB
/
CircuitCorrectness.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(*! Circuits | Compiler correctness proof !*)
Require Import Coq.setoid_ring.Ring_theory Coq.setoid_ring.Ring Coq.setoid_ring.Ring.
Require Import
Koika.Common
Koika.SemanticProperties Koika.PrimitiveProperties
Koika.LoweredSyntax Koika.Lowering Koika.CircuitSemantics Koika.CircuitProperties
Koika.LoweredSemantics Koika.Environments.
Section CompilerCorrectness.
Context {pos_t var_t rule_name_t reg_t ext_fn_t: Type}.
Context {CR: reg_t -> nat}.
Context {CSigma: ext_fn_t -> CExternalSignature}.
Context {REnv: Env reg_t}.
Context (cr: REnv.(env_t) (fun idx => bits (CR idx))).
Context (csigma: forall f, CSig_denote (CSigma f)).
Context {Show_var_t : Show var_t}.
Context {Show_rule_name_t : Show rule_name_t}.
Instance reg_t_eq_dec : EqDec reg_t := @EqDec_FiniteType _ (REnv.(finite_keys)).
Open Scope bool_scope.
Notation Log := (CLog CR REnv).
Notation rwset := (rwset (rule_name_t := rule_name_t)).
Notation rwdata := (rwdata (rule_name_t := rule_name_t) CR CSigma).
Notation circuit := (circuit (rule_name_t := rule_name_t) (rwdata := rwdata) CR CSigma).
Notation scheduler_circuit := (scheduler_circuit (rule_name_t := rule_name_t) CR CSigma REnv).
Notation action := (action pos_t var_t CR CSigma).
Notation rule := (rule pos_t var_t CR CSigma).
Notation interp_circuit := (interp_circuit (rule_name_t := rule_name_t) cr csigma).
Notation circuit_le := (circuit_le cr csigma).
Context (rc: REnv.(env_t) (fun reg => circuit (CR reg))).
Context (lco: (@local_circuit_optimizer
rule_name_t reg_t ext_fn_t CR CSigma
rwdata csigma)).
Section OpCompile.
Ltac compile_op_t :=
match goal with
| _ => progress intros
| _ => progress simpl in *
| _ => progress unfold compile_unop, compile_binop, Bits.extend_beginning, Bits.extend_end,
struct_sz, field_sz, array_sz, element_sz, slice_subst_macro, slice_subst_impl
| _ => progress rewrite ?sel_msb, ?vect_repeat_single_const,
?slice_subst_impl_correct, ?interp_circuit_cast
| _ => rewrite bits_of_value_of_bits
| [ H: interp_circuit _ = _ |- _ ] => rewrite H
| [ |- context[match ?d with _ => _ end] ] => is_var d; destruct d
| [ |- context[match le_gt_dec ?x ?y with _ => _ end] ] => destruct (le_gt_dec x y)
| [ |- context[eq_rect _ _ _ _ ?pr] ] => destruct pr
| _ => rewrite lco_proof
| _ => solve [eauto]
end.
Theorem compile_unop_correct :
forall fn c a,
interp_circuit c = a ->
interp_circuit (compile_unop lco.(lco_fn) fn c) = CircuitPrimSpecs.sigma1 fn a.
Proof.
destruct fn; repeat compile_op_t.
Qed.
Theorem compile_binop_correct :
forall fn c1 c2 a1 a2,
interp_circuit c1 = a1 ->
interp_circuit c2 = a2 ->
interp_circuit (compile_binop lco.(lco_fn) fn c1 c2) = CircuitPrimSpecs.sigma2 fn a1 a2.
Proof.
destruct fn; repeat compile_op_t.
Qed.
End OpCompile.
Definition circuit_env_equiv :=
forall (idx: reg_t), interp_circuit (REnv.(getenv) rc idx) = REnv.(getenv) cr idx.
Definition log_data0_consistent' (l: Log) (regs: rwset) :=
forall (idx: reg_t),
let cidx := REnv.(getenv) regs idx in
interp_circuit (cidx.(data0)) =
match latest_write0 l idx with
| Some v => v
| None => getenv REnv cr idx
end.
Definition log_data0_consistent (l L: Log) (regs: rwset) :=
log_data0_consistent' (log_app l L) regs.
Definition log_data1_consistent' (l: Log) (regs: rwset) :=
forall (idx: reg_t),
let cidx := REnv.(getenv) regs idx in
log_existsb l idx is_write1 = true ->
match latest_write1 l idx with
| Some v => interp_circuit (cidx.(data1)) = v
| None => False
end.
Definition log_data1_consistent (l L: Log) (regs: rwset) :=
log_data1_consistent' (log_app l L) regs.
Ltac data_consistent_putenv_t :=
unfold log_data0_consistent, log_data0_consistent', log_data1_consistent, log_data1_consistent';
repeat match goal with
| _ => progress intros
| [ H: _ = _ |- _ ] => rewrite H
| [ H: forall (idx: reg_t), _, idx: reg_t |- _ ] => pose_once H idx
| [ |- context[REnv.(getenv) (REnv.(putenv) _ ?idx _) ?idx'] ] =>
destruct (eq_dec idx idx'); subst;
[ rewrite !get_put_eq | rewrite !get_put_neq by eassumption ]
| _ => progress rewrite ?latest_write0_app, ?latest_write1_app in *
| _ => progress rewrite ?latest_write0_cons_eq, ?latest_write0_cons_neq
| _ => progress rewrite ?latest_write1_cons_eq, ?latest_write1_cons_neq
end; eauto.
Lemma log_data0_consistent_putenv_read_write1 :
forall (idx: reg_t) k p log Log rws rwd v,
k = LogRead \/ (k = LogWrite /\ p = P1) ->
data0 rwd = data0 (REnv.(getenv) rws idx) ->
log_data0_consistent log Log rws ->
log_data0_consistent (log_cons idx {| kind := k; port := p; val := v |} log) Log
(REnv.(putenv) rws idx rwd).
Proof.
destruct 1; repeat cleanup_step; subst.
all: data_consistent_putenv_t.
Qed.
Lemma log_data0_consistent_putenv_write0 :
forall (idx: reg_t) log Log rws rwd v,
v = interp_circuit (data0 rwd) ->
log_data0_consistent log Log rws ->
log_data0_consistent (log_cons idx {| kind := LogWrite; port := P0; val := v |} log) Log
(REnv.(putenv) rws idx rwd).
Proof.
data_consistent_putenv_t.
Qed.
Ltac bool_cleanup :=
match goal with
| _ => reflexivity
| _ => cleanup_step
| [ H: _ \/ _ |- _ ] => destruct H
| _ => bool_step
| [ H: log_existsb (log_app _ _) _ _ = _ |- _ ] =>
rewrite log_existsb_app in H
| [ H: ?x = _ |- context[?x] ] =>
rewrite H
| _ => progress bool_simpl
end.
Lemma log_existsb_app_cons_write1_eq:
forall (idx: reg_t) k p (log: Log) Log v,
k = LogRead \/ (k = LogWrite /\ p = P0) ->
log_existsb (log_app (log_cons idx {| kind := k; port := p; val := v |} log) Log) idx is_write1 = true ->
log_existsb (log_app log Log) idx is_write1 = true.
Proof.
destruct 1; repeat cleanup_step; subst.
all: rewrite !log_existsb_app; intros H; bool_cleanup; destruct H;
try rewrite @log_existsb_log_cons_eq in H; eauto; bool_simpl; try rewrite H; bool_simpl; reflexivity.
Qed.
Lemma log_existsb_app_cons_write1_neq:
forall (idx: reg_t) idx' k p (log: Log) Log v,
idx <> idx' ->
log_existsb (log_app (log_cons idx' {| kind := k; port := p; val := v |} log) Log) idx is_write1 = true ->
log_existsb (log_app log Log) idx is_write1 = true.
Proof.
intros *.
rewrite !log_existsb_app; intros Hneq H; bool_cleanup; destruct H;
try rewrite @log_existsb_log_cons_neq in H; eauto; bool_simpl; try rewrite H; bool_simpl; reflexivity.
Qed.
Lemma log_data1_consistent_putenv_read_write0 :
forall (idx: reg_t) k p log Log rws rwd v,
k = LogRead \/ (k = LogWrite /\ p = P0) ->
data1 rwd = data1 (REnv.(getenv) rws idx) ->
log_data1_consistent log Log rws ->
log_data1_consistent (log_cons idx {| kind := k; port := p; val := v |} log) Log
(REnv.(putenv) rws idx rwd).
Proof.
destruct 1; repeat cleanup_step; subst.
all: data_consistent_putenv_t.
all: match goal with
| [ Hnew: _ <> _, H: log_existsb _ _ _ = _ -> _ |- _ ] =>
apply H;
eapply log_existsb_app_cons_write1_neq;
try eassumption; eauto
| [ H: log_existsb _ _ _ = _ -> _ |- _ ] =>
apply H;
eapply log_existsb_app_cons_write1_eq;
try eassumption; eauto
end.
Qed.
Lemma log_data1_consistent_putenv_write1 :
forall (idx: reg_t) log Log rws rwd v,
v = interp_circuit (data1 rwd) ->
log_data1_consistent log Log rws ->
log_data1_consistent (log_cons idx {| kind := LogWrite; port := P1; val := v |} log) Log
(REnv.(putenv) rws idx rwd).
Proof.
data_consistent_putenv_t.
apply H2.
eapply log_existsb_app_cons_write1_neq; eauto.
Qed.
Ltac log_consistent_mux_t :=
intros cond * H0 H1 idx;
unfold mux_rwsets; rewrite !getenv_map2;
unfold mux_rwdata; cbn;
rewrite !lco_proof; cbn;
destruct (interp_circuit cond) as [ [ | ] [] ]; cbn;
[ specialize (H1 eq_refl idx) | specialize (H0 eq_refl idx) ];
eauto.
Lemma log_data0_consistent'_mux :
forall cond rws0 rws1 s l,
(interp_circuit cond = Ob~0 -> log_data0_consistent' l rws0) ->
(interp_circuit cond = Ob~1 -> log_data0_consistent' l rws1) ->
log_data0_consistent' l (mux_rwsets lco s cond rws1 rws0).
Proof.
log_consistent_mux_t.
Qed.
Tactic Notation "log_consistent_mux_t'" constr(thm) :=
intros; apply thm;
eauto;
let Heq := fresh in
intros Heq; rewrite Heq in *; discriminate.
Notation mux_rwsets := (mux_rwsets lco).
Lemma log_data0_consistent'_mux_l :
forall cond rws0 rws1 s l,
interp_circuit cond = Ob~1 ->
log_data0_consistent' l rws1 ->
log_data0_consistent' l (mux_rwsets s cond rws1 rws0).
Proof.
log_consistent_mux_t' log_data0_consistent'_mux.
Qed.
Lemma log_data0_consistent'_mux_r :
forall cond rws0 rws1 s l,
interp_circuit cond = Ob~0 ->
log_data0_consistent' l rws0 ->
log_data0_consistent' l (mux_rwsets s cond rws1 rws0).
Proof.
log_consistent_mux_t' log_data0_consistent'_mux.
Qed.
Lemma log_data0_consistent_mux_l :
forall cond rws0 rws1 s l L,
interp_circuit cond = Ob~1 ->
log_data0_consistent l L rws1 ->
log_data0_consistent l L (mux_rwsets s cond rws1 rws0).
Proof.
log_consistent_mux_t' log_data0_consistent'_mux.
Qed.
Lemma log_data0_consistent_mux_r :
forall cond rws0 rws1 s l L,
interp_circuit cond = Ob~0 ->
log_data0_consistent l L rws0 ->
log_data0_consistent l L (mux_rwsets s cond rws1 rws0).
Proof.
log_consistent_mux_t' log_data0_consistent'_mux.
Qed.
Lemma log_data1_consistent'_mux :
forall cond rws0 rws1 s l,
(interp_circuit cond = Ob~0 -> log_data1_consistent' l rws0) ->
(interp_circuit cond = Ob~1 -> log_data1_consistent' l rws1) ->
log_data1_consistent' l (mux_rwsets s cond rws1 rws0).
Proof.
log_consistent_mux_t.
Qed.
Lemma log_data1_consistent'_mux_l :
forall cond rws0 rws1 s l,
interp_circuit cond = Ob~1 ->
log_data1_consistent' l rws1 ->
log_data1_consistent' l (mux_rwsets s cond rws1 rws0).
Proof.
log_consistent_mux_t' log_data1_consistent'_mux.
Qed.
Lemma log_data1_consistent'_mux_r :
forall cond rws0 rws1 s l,
interp_circuit cond = Ob~0 ->
log_data1_consistent' l rws0 ->
log_data1_consistent' l (mux_rwsets s cond rws1 rws0).
Proof.
log_consistent_mux_t' log_data1_consistent'_mux.
Qed.
Definition log_rwdata_consistent (log: Log) (regs: rwset) :=
forall (idx: reg_t),
let cidx := REnv.(getenv) regs idx in
(interp_circuit (cidx.(read0)) = Ob~(log_existsb log idx is_read0)) /\
(interp_circuit (cidx.(read1)) = Ob~(log_existsb log idx is_read1)) /\
(interp_circuit (cidx.(write0)) = Ob~(log_existsb log idx is_write0)) /\
(interp_circuit (cidx.(write1)) = Ob~(log_existsb log idx is_write1)).
Definition log_rwdata_consistent_update {sz} kind port (rwd rwd': rwdata sz) :=
interp_circuit (read0 rwd) =
Ob~(is_read0 kind port || Bits.single (interp_circuit (read0 rwd'))) /\
interp_circuit (read1 rwd) =
Ob~(is_read1 kind port || Bits.single (interp_circuit (read1 rwd'))) /\
interp_circuit (write0 rwd) =
Ob~(is_write0 kind port || Bits.single (interp_circuit (write0 rwd'))) /\
interp_circuit (write1 rwd) =
Ob~(is_write1 kind port || Bits.single (interp_circuit (write1 rwd'))).
Lemma log_rwdata_consistent_log_cons_putenv :
forall (log: Log) idx (regs: rwset) rwd le,
log_rwdata_consistent log regs ->
log_rwdata_consistent_update le.(kind) le.(port) rwd (REnv.(getenv) regs idx) ->
log_rwdata_consistent (log_cons idx le log) (REnv.(putenv) regs idx rwd).
Proof.
unfold log_rwdata_consistent; intros *; destruct le;
intros Heq Hcst **; destruct (eq_dec idx idx0); subst;
[ rewrite !get_put_eq | rewrite !get_put_neq by eassumption ].
- specialize (Heq idx0).
rewrite !@log_existsb_log_cons_eq.
repeat cleanup_step.
repeat match goal with
| [ H: _ = _ |- _ ] => apply (f_equal Bits.single) in H; cbn in H
| [ H: _ = _ |- _ ] => rewrite <- H
end.
apply Hcst.
- rewrite !@log_existsb_log_cons_neq;
eauto.
Qed.
Lemma log_rwdata_consistent_mux :
forall cond rws0 rws1 s l,
(interp_circuit cond = Ob~0 -> log_rwdata_consistent l rws0) ->
(interp_circuit cond = Ob~1 -> log_rwdata_consistent l rws1) ->
log_rwdata_consistent l (mux_rwsets s cond rws1 rws0).
Proof.
log_consistent_mux_t.
Qed.
Lemma log_rwdata_consistent_mux_l :
forall cond rws0 rws1 s l,
interp_circuit cond = Ob~1 ->
log_rwdata_consistent l rws1 ->
log_rwdata_consistent l (mux_rwsets s cond rws1 rws0).
Proof.
log_consistent_mux_t' log_rwdata_consistent_mux.
Qed.
Lemma log_rwdata_consistent_mux_r :
forall cond rws0 rws1 s l,
interp_circuit cond = Ob~0 ->
log_rwdata_consistent l rws0 ->
log_rwdata_consistent l (mux_rwsets s cond rws1 rws0).
Proof.
log_consistent_mux_t' log_rwdata_consistent_mux.
Qed.
Ltac ceauto :=
eauto with circuits.
Notation willFire_of_canFire' := (willFire_of_canFire' lco).
Notation willFire_of_canFire := (willFire_of_canFire lco).
Lemma interp_willFire_of_canFire_canFire_false rl :
forall (c: circuit 1) (rwd: rwset) (cLog: scheduler_circuit),
interp_circuit c = Ob~0 ->
interp_circuit (willFire_of_canFire rl {| canFire := c; regs := rwd |} cLog) = Ob~0.
Proof.
intros.
eapply interp_circuit_circuit_le_helper_false.
apply circuit_le_willFire_of_canFire_canFire.
eassumption.
Qed.
Lemma interp_willFire_of_canFire_eqn rl :
forall clog (cLog: scheduler_circuit),
interp_circuit (willFire_of_canFire rl clog cLog) =
Ob~(andb (Bits.single (interp_circuit (canFire clog)))
(List.forallb (fun idx =>
(Bits.single
(interp_circuit
(willFire_of_canFire'
(REnv.(getenv) clog.(regs) idx)
(REnv.(getenv) cLog idx)))))
(finite_elements (FiniteType := finite_keys REnv)))).
Proof.
unfold willFire_of_canFire, Environments.fold_right; cbn.
induction finite_elements; cbn; intros.
- bool_simpl; rewrite Bits.single_cons; reflexivity.
- rewrite getenv_zip; cbn.
rewrite lco_proof; cbn.
rewrite IHl; cbn.
f_equal.
rewrite <- !andb_assoc.
f_equal.
apply andb_comm.
Qed.
Opaque CircuitGeneration.willFire_of_canFire'.
Lemma finite_In {T} {FT: FiniteType T}:
forall t: T, List.In t finite_elements.
Proof.
eauto using nth_error_In, finite_surjective.
Qed.
Lemma interp_willFire_of_canFire_true rl:
forall clog (cLog: scheduler_circuit),
interp_circuit (willFire_of_canFire rl clog cLog) = Ob~1 <->
interp_circuit (canFire clog) = Ob~1 /\
forall (idx: reg_t), interp_circuit
(willFire_of_canFire'
(REnv.(getenv) clog.(regs) idx)
(REnv.(getenv) cLog idx)) = Ob~1.
Proof.
split; intros * H.
- rewrite interp_willFire_of_canFire_eqn in H.
apply Bits.cons_inj in H; repeat cleanup_step || bool_step.
split.
+ eauto using Bits.single_inj.
+ intros idx.
lazymatch goal with
| [ H: forallb _ _ = _ |- _ ] =>
rewrite forallb_forall in H;
specialize (H idx ltac:(eauto using @finite_In))
end.
eauto using Bits.single_inj.
- rewrite interp_willFire_of_canFire_eqn.
repeat cleanup_step.
rewrite H; cbn.
f_equal.
apply forallb_forall; intros idx **.
rewrite H0; reflexivity.
Qed.
Lemma interp_willFire_of_canFire_false rl:
forall clog (cLog: scheduler_circuit),
interp_circuit (willFire_of_canFire rl clog cLog) = Ob~0 <->
interp_circuit (canFire clog) = Ob~0 \/
exists idx, interp_circuit
(willFire_of_canFire'
(REnv.(getenv) clog.(regs) idx)
(REnv.(getenv) cLog idx)) = Ob~0.
Proof.
split; intros * H.
- rewrite interp_willFire_of_canFire_eqn in H.
apply Bits.cons_inj in H; repeat cleanup_step || bool_step; destruct H.
+ eauto using Bits.single_inj.
+ right. rewrite forallb_exists in H.
destruct H as (idx & _ & Heq).
eauto using Bits.single_inj.
- rewrite interp_willFire_of_canFire_eqn; f_equal.
rewrite andb_false_iff; destruct H as [ -> | ( idx & Heq ) ]; [left | right].
+ reflexivity.
+ rewrite forallb_exists.
exists idx; rewrite Heq.
eauto using @finite_In.
Qed.
Transparent CircuitGeneration.willFire_of_canFire'.
Definition rwdata_circuit_le_invariant {idx} (rwd1 rwd2: rwdata (CR idx)) :=
circuit_le (rwd1.(read0)) (rwd2.(read0)) /\
circuit_le (rwd1.(write0)) (rwd2.(write0)) /\
circuit_le (rwd1.(read1)) (rwd2.(read1)) /\
circuit_le (rwd1.(write1)) (rwd2.(write1)).
Definition rwset_circuit_le_invariant (rws1 rws2: rwset) idx :=
rwdata_circuit_le_invariant
(REnv.(getenv) rws1 idx)
(REnv.(getenv) rws2 idx).
Lemma rwset_circuit_le_invariant_refl :
forall rws idx, rwset_circuit_le_invariant rws rws idx.
Proof. firstorder using circuit_le_refl. Qed.
Lemma rwset_circuit_le_invariant_trans :
forall rws1 rws2 rws3 idx,
rwset_circuit_le_invariant rws1 rws2 idx ->
rwset_circuit_le_invariant rws2 rws3 idx ->
rwset_circuit_le_invariant rws1 rws3 idx.
Proof. firstorder using circuit_le_trans. Qed.
Lemma rwset_circuit_le_invariant_putenv_eq :
forall rws1 rws2 idx rwd0,
rwdata_circuit_le_invariant (REnv.(getenv) rws1 idx) rwd0 ->
rwset_circuit_le_invariant rws1 (REnv.(putenv) rws2 idx rwd0) idx.
Proof.
unfold rwset_circuit_le_invariant; intros.
rewrite get_put_eq; eauto.
Qed.
Lemma rwset_circuit_le_invariant_putenv_neq :
forall rws1 rws2 idx idx0 rwd0,
idx <> idx0 ->
rwset_circuit_le_invariant rws1 rws2 idx ->
rwset_circuit_le_invariant rws1 (REnv.(putenv) rws2 idx0 rwd0) idx.
Proof.
unfold rwset_circuit_le_invariant; intros.
rewrite get_put_neq; eauto.
Qed.
Lemma rwset_circuit_le_invariant_putenv :
forall rws1 rws2 idx0 rwd0,
(forall (idx: reg_t), rwset_circuit_le_invariant rws1 rws2 idx) ->
rwdata_circuit_le_invariant (getenv REnv rws1 idx0) rwd0 ->
(forall (idx: reg_t), rwset_circuit_le_invariant rws1 (REnv.(putenv) rws2 idx0 rwd0) idx).
Proof.
intros.
destruct (eq_dec idx0 idx); subst;
eauto using rwset_circuit_le_invariant_putenv_eq, rwset_circuit_le_invariant_putenv_neq.
Qed.
Notation mux_rwdata := (mux_rwdata lco).
Lemma rwdata_circuit_le_invariant_mux_rwdata_l :
forall s c idx rwd1 rwd2 rwd3,
(interp_circuit c = Ob~1 -> @rwdata_circuit_le_invariant idx rwd1 rwd3) ->
(interp_circuit c = Ob~0 -> @rwdata_circuit_le_invariant idx rwd2 rwd3) ->
@rwdata_circuit_le_invariant idx (mux_rwdata s c rwd1 rwd2) rwd3.
Proof.
unfold rwdata_circuit_le_invariant, mux_rwdata; cbn; intros.
repeat split; apply circuit_le_CAnnot_l, circuit_le_opt_l, circuit_le_CMux_l; intuition eauto.
Qed.
Lemma rwdata_circuit_le_invariant_mux_rwdata_r :
forall s c idx rwd1 rwd2 rwd3,
(interp_circuit c = Ob~1 -> @rwdata_circuit_le_invariant idx rwd1 rwd2) ->
(interp_circuit c = Ob~0 -> @rwdata_circuit_le_invariant idx rwd1 rwd3) ->
@rwdata_circuit_le_invariant idx rwd1 (mux_rwdata s c rwd2 rwd3).
Proof.
unfold rwdata_circuit_le_invariant, mux_rwdata; cbn; intros.
repeat split; apply circuit_le_CAnnot_r, circuit_le_opt_r, circuit_le_CMux_r; intuition eauto.
Qed.
Notation compile_action := (compile_action lco).
Ltac circuit_compile_destruct_t :=
repeat lazymatch goal with
| [ IH: context[CircuitGeneration.compile_action ?lco ?rc _ ?a _],
H: context[CircuitGeneration.compile_action ?lco ?rc ?gamma ?a ?rwc] |- _ ] =>
specialize (IH gamma rwc _ _ (surjective_pairing _));
destruct (CircuitGeneration.compile_action lco rc gamma a rwc); cbn
| [ H: (_, _) = (_, _) |- _ ] => inversion H; subst; clear H
end.
Theorem rwset_circuit_le_compile_action_correct {sig tau} :
forall (gamma: ccontext sig) (a: action sig tau) (rwc: rwcircuit) c gamma',
compile_action rc gamma a rwc = (c, gamma') ->
circuit_le (canFire (erwc c)) (canFire rwc) /\
forall (idx: reg_t), rwset_circuit_le_invariant (rwc.(regs)) (c.(erwc).(regs)) idx.
Proof.
induction a; cbn; intros; circuit_compile_destruct_t; cbn in *;
try solve [split; circuit_le_f_equal; eauto using rwset_circuit_le_invariant_refl].
- (* Assign *)
intuition eauto using circuit_le_trans, rwset_circuit_le_invariant_trans.
- (* Seq *)
intuition eauto using circuit_le_trans, rwset_circuit_le_invariant_trans.
- (* Bind *)
intuition eauto using circuit_le_trans, rwset_circuit_le_invariant_trans.
- (* If *)
split.
+ circuit_le_f_equal.
apply circuit_le_CMux_l;
intuition eauto using circuit_le_trans, rwset_circuit_le_invariant_trans.
+ unfold mux_rwsets; red; intros.
rewrite getenv_map2.
apply rwdata_circuit_le_invariant_mux_rwdata_r;
intros; eapply rwset_circuit_le_invariant_trans; intuition eauto.
- destruct port; cbn; circuit_compile_destruct_t.
(* Read0 *)
+ split.
* apply circuit_le_refl.
* intros. eapply rwset_circuit_le_invariant_putenv.
-- eauto using rwset_circuit_le_invariant_refl.
-- red; cbn; eauto using circuit_le_true, circuit_le_refl, circuit_le_opt_r.
(* Read1 *)
+ split.
* eauto using circuit_le_refl.
* intros; apply rwset_circuit_le_invariant_putenv.
-- eauto using rwset_circuit_le_invariant_refl.
-- red; cbn; eauto using circuit_le_true, circuit_le_refl, circuit_le_opt_r.
- (* Write *)
destruct port; cbn;
circuit_compile_destruct_t;
destruct IHa as (Hpr & Hpr'); split.
all: circuit_le_f_equal; eauto using circuit_le_CAnd_l.
all: intros; apply rwset_circuit_le_invariant_putenv; eauto.
all: specialize (Hpr' idx); repeat (red || red in Hpr'); cbn;
intuition eauto using circuit_le_true, circuit_le_opt_r.
- (* Unop *)
circuit_compile_destruct_t.
intuition eauto using circuit_le_trans, rwset_circuit_le_invariant_trans.
- (* Binop *)
circuit_compile_destruct_t.
intuition eauto using circuit_le_trans, rwset_circuit_le_invariant_trans.
- (* ExternalCall *)
circuit_compile_destruct_t.
intuition eauto using circuit_le_trans, rwset_circuit_le_invariant_trans.
- (* APos *) eauto.
Qed.
Lemma circuit_le_willFire_of_canFire':
forall (idx: reg_t) (rwd0 rwd1 rwd2: rwdata (CR idx)),
rwdata_circuit_le_invariant rwd1 rwd0 ->
circuit_le (willFire_of_canFire' rwd0 rwd2) (willFire_of_canFire' rwd1 rwd2).
Proof.
unfold rwdata_circuit_le_invariant; intros; repeat cleanup_step; circuit_le_f_equal;
eauto.
Qed.
Lemma circuit_le_willFire_of_canFire rl:
forall (l1 l2: rwcircuit) L,
circuit_le (canFire l1) (canFire l2) ->
(forall (idx: reg_t), rwset_circuit_le_invariant l2.(regs) l1.(regs) idx) ->
circuit_le (willFire_of_canFire rl l1 L) (willFire_of_canFire rl l2 L).
Proof.
unfold willFire_of_canFire; intros * Hlt Hfr.
apply circuit_le_fold_right.
- eassumption.
- intros; rewrite !getenv_zip; cbn.
apply circuit_le_CAnnot, circuit_le_opt_l, circuit_le_opt_r, circuit_le_CAnd.
assumption.
apply circuit_le_willFire_of_canFire'.
apply Hfr.
Qed.
Lemma action_compile_willFire_of_canFire'_decreasing {sig}:
forall t (ex : action sig t) (gamma : ccontext sig) (rwc : rwcircuit) idx rwd c gamma',
compile_action rc gamma ex rwc = (c, gamma') ->
circuit_le (willFire_of_canFire' (getenv REnv (regs (erwc c)) idx) rwd)
(willFire_of_canFire' (getenv REnv (regs rwc) idx) rwd).
Proof.
intros. eapply circuit_le_willFire_of_canFire', rwset_circuit_le_compile_action_correct. eauto.
Qed.
Theorem action_compile_willFire_of_canFire_decreasing rl {sig}:
forall t (ex : action sig t) (cLog : scheduler_circuit)
(gamma : ccontext sig) (rwc : rwcircuit) c gamma',
compile_action rc gamma ex rwc = (c, gamma') ->
circuit_le (willFire_of_canFire rl (erwc c) cLog)
(willFire_of_canFire rl rwc cLog).
Proof.
intros;
eapply circuit_le_willFire_of_canFire;
eapply rwset_circuit_le_compile_action_correct; eauto.
Qed.
Lemma willFire_of_canFire_decreasing rl:
forall c1 c2 (cLog: scheduler_circuit) rws,
circuit_le c1 c2 ->
circuit_le (willFire_of_canFire rl {| canFire := c1; regs := rws |} cLog)
(willFire_of_canFire rl {| canFire := c2; regs := rws |} cLog).
Proof.
unfold willFire_of_canFire; intros.
eapply circuit_le_fold_right.
- eassumption.
- intros; rewrite !getenv_zip.
cbn.
eauto using circuit_le_CAnnot, circuit_le_opt_l, circuit_le_opt_r, circuit_le_CAnd, circuit_le_refl.
Qed.
Definition circuit_gamma_equiv {sig} (Gamma : lcontext sig) (gamma : ccontext sig) :=
forall sz (m : member sz sig),
interp_circuit (cassoc m gamma) = cassoc m Gamma.
Lemma circuit_gamma_equiv_empty :
circuit_gamma_equiv CtxEmpty CtxEmpty.
Proof.
red; intros; elim (mdestruct m).
Qed.
Lemma circuit_gamma_equiv_CtxCons {sig}:
forall Gamma gamma,
circuit_gamma_equiv (Gamma: lcontext sig) (gamma: ccontext sig) ->
forall (sz: nat) (t: bits sz) (c : circuit sz),
interp_circuit c = t ->
circuit_gamma_equiv (CtxCons sz t Gamma) (CtxCons sz c gamma).
Proof.
unfold circuit_gamma_equiv; intros.
destruct (mdestruct m) as [(Heq & ->) | (m' & ->)]; cbn.
- inversion Heq; subst.
rewrite <- Eqdep_dec.eq_rect_eq_dec; [reflexivity | apply eq_dec].
- eauto.
Qed.
Ltac t_interp_circuit_willFire_of_canFire :=
repeat match goal with
| _ => progress intros
| _ => reflexivity
| [ H: context[lco_fn] |- _ ] => rewrite lco_proof in H
| [ |- context[lco_fn] ] => rewrite lco_proof
| _ => progress cbn
| [ H: _ = _ |- _ ] => rewrite H
| _ => destruct (Bits.single _)
end.
Lemma interp_circuit_willFire_of_canFire_read0:
forall {sz} (rwd : rwdata sz) cLog
cOne (cdata0 cdata1 : circuit sz),
interp_circuit cOne = Ob~1 ->
interp_circuit
(willFire_of_canFire'
{| read0 := cOne;
read1 := read1 rwd;
write0 := write0 rwd;
write1 := write1 rwd;
data0 := cdata0;
data1 := cdata1 |} cLog) =
Ob~(Bits.single (interp_circuit (willFire_of_canFire' rwd cLog)) &&
negb (Bits.single (interp_circuit cLog.(write0))) &&
negb (Bits.single (interp_circuit cLog.(write1)))).
Proof.
t_interp_circuit_willFire_of_canFire.
Qed.
Lemma interp_circuit_willFire_of_canFire_read1:
forall {sz} (rwd : rwdata sz) cLog
cOne (cdata0 cdata1 : circuit sz),
interp_circuit cOne = Ob~1 ->
interp_circuit
(willFire_of_canFire'
{| read0 := read0 rwd;
read1 := cOne;
write0 := write0 rwd;
write1 := write1 rwd;
data0 := cdata0;
data1 := cdata1 |} cLog) =
Ob~(Bits.single (interp_circuit (willFire_of_canFire' rwd cLog)) &&
negb (Bits.single (interp_circuit (write1 cLog)))).
Proof.
t_interp_circuit_willFire_of_canFire.
Qed.
Lemma interp_circuit_willFire_of_canFire_write0:
forall {sz} (rwd : rwdata sz) cLog
cOne (cdata0 cdata1 : circuit sz),
interp_circuit cOne = Ob~1 ->
interp_circuit
(willFire_of_canFire'
{| read0 := read0 rwd;
read1 := read1 rwd;
write0 := cOne;
write1 := write1 rwd;
data0 := cdata0;
data1 := cdata1 |} cLog) =
Ob~(Bits.single (interp_circuit (willFire_of_canFire' rwd cLog)) &&
negb (Bits.single (interp_circuit cLog.(write0))) &&
negb (Bits.single (interp_circuit cLog.(write1))) &&
negb (Bits.single (interp_circuit cLog.(read1)))).
Proof.
t_interp_circuit_willFire_of_canFire.
Qed.
Lemma interp_circuit_willFire_of_canFire_write1:
forall {sz} (rwd : rwdata sz) cLog
cOne (cdata0 cdata1 : circuit sz),
interp_circuit cOne = Ob~1 ->
interp_circuit
(willFire_of_canFire'
{| read0 := read0 rwd;
read1 := read1 rwd;
write0 := write0 rwd;
write1 := cOne;
data0 := cdata0;
data1 := cdata1 |} cLog) =
Ob~(Bits.single (interp_circuit (willFire_of_canFire' rwd cLog)) &&
negb (Bits.single (interp_circuit (write1 cLog)))).
Proof.
t_interp_circuit_willFire_of_canFire.
Qed.
Arguments CircuitGeneration.willFire_of_canFire' : simpl never.
Arguments CircuitGeneration.willFire_of_canFire : simpl never.
Lemma interp_circuit_willFire_of_canFire'_mux_rwdata:
forall (idx : reg_t) s (rwd1 rwd2 : rwdata (CR idx)) (cCond : circuit 1) (rwdL : rwdata (CR idx)),
interp_circuit (willFire_of_canFire' (mux_rwdata s cCond rwd1 rwd2) rwdL) =
if Bits.single (interp_circuit cCond) then
interp_circuit (willFire_of_canFire' rwd1 rwdL)
else
interp_circuit (willFire_of_canFire' rwd2 rwdL).
Proof.
intros *;
unfold willFire_of_canFire'; cbn.
repeat (rewrite !lco_proof; cbn).
destruct (interp_circuit cCond) as [ [ | ] [ ] ];
cbn; eauto.
Qed.
(* Hint Extern 1 => eapply circuit_gamma_equiv_CtxCons : circuits. *)
Hint Resolve
circuit_le_CAnnot_l
circuit_le_CAnnot_r
circuit_le_CBundleRef_l
circuit_le_CBundleRef_r
circuit_le_CAnd
circuit_le_CAnd_l
circuit_le_CAnd_r
circuit_le_opt_l
circuit_le_opt_r
circuit_le_COr
circuit_le_CNot
circuit_le_true
circuit_le_false
circuit_le_refl
circuit_le_true
circuit_le_false
rwset_circuit_le_invariant_putenv
rwset_circuit_le_invariant_refl : circuits.
Hint Resolve Bits.single_inj : circuits.
Hint Extern 3 => cbn in * : circuits.
Hint Extern 3 => red : circuits.
Ltac t_step :=
match goal with
| _ => cleanup_step
| _ => progress intros
| _ => progress cbn in *
| [ H: context[lco_fn] |- _ ] => rewrite lco_proof in H
| [ |- context[lco_fn] ] => rewrite lco_proof
| [ H: _ * _ |- _ ] => destruct H
| [ H: _ \/ _ |- _ ] => destruct H
| [ H: exists _, _ |- _ ] => destruct H
| [ |- Ob~_ = Ob~_ ] => f_equal
| [ H: ?x = true |- context[?x] ] => rewrite H
| [ H: ?x = false |- context[?x] ] => rewrite H
| [ H: interp_circuit ?c = Ob~_ |- context[interp_circuit ?c] ] =>
rewrite H
| [ |- match (if ?x then _ else _) with _ => _ end ] =>
destruct x eqn:?; cbn
| [ |- context[CircuitGeneration.compile_action ?lco ?rc ?gamma ?ex ?clog] ] =>
destruct (CircuitGeneration.compile_action lco rc gamma ex clog) eqn:?; cbn
| [ IH: context[interp_action _ _ _ _ _ ?ex] |-
context[interp_action _ _ ?Gamma ?Log ?log ?ex] ] =>
specialize (IH _ Gamma _ log ltac:(ceauto) ltac:(ceauto) ltac:(ceauto)
ltac:(ceauto) ltac:(eauto using circuit_gamma_equiv_CtxCons with circuits)
ltac:(ceauto) ltac:(ceauto));
cbv zeta in IH;
destruct (interp_action _ _ Gamma Log log ex) as [(? & ?) | ] eqn:?; cbn
| [ H: interp_circuit ?x = bits_of_value _ |- context[interp_circuit ?x] ] =>
rewrite H
| [ |- context[REnv.(getenv) (map2 REnv _ _ _)] ] =>
rewrite getenv_map2
| [ Heq: CircuitGeneration.compile_action ?lco ?rc ?gamma ?ex ?clog = _ |- _ ] => progress rewrite Heq in *
end.
(* Create HintDb circuits discriminated. *)
Ltac t := repeat t_step; eauto 6. (* with circuits. *)
Ltac interp_willFire_cleanup :=
repeat match goal with
| _ => reflexivity
(* The notations for willFire_of_canFire and willFire_of_canFire'
can't be used here, because of section variable (Coq bug?) *)
| [ H: interp_circuit (CircuitGeneration.willFire_of_canFire _ _ _ _) = Ob~1 |- _ ] =>
rewrite interp_willFire_of_canFire_true in H
| [ H: interp_circuit (CircuitGeneration.willFire_of_canFire _ _ _ _) = Ob~0 |- _ ] =>
rewrite interp_willFire_of_canFire_false in H
| [ |- interp_circuit (CircuitGeneration.willFire_of_canFire _ _ _ _) = Ob~1 ] =>
rewrite interp_willFire_of_canFire_true
| [ |- interp_circuit (CircuitGeneration.willFire_of_canFire _ _ _ _) = Ob~0 ] =>
rewrite interp_willFire_of_canFire_false
| _ => progress cbn
| _ => progress intros
| [ |- _ /\ _ ] => split
| [ H: _ /\ _ |- _ ] => destruct H
| [ |- Ob~_ = Ob~_ ] => f_equal
| [ |- _ && _ = true ] => rewrite andb_true_intro; split
| [ |- context[REnv.(getenv) (REnv.(putenv) _ ?idx _) ?idx'] ] =>
destruct (eq_dec idx idx'); subst;
[ rewrite !get_put_eq | rewrite !get_put_neq by eassumption ];
[ | solve [intuition eauto] ]
| [ |- interp_circuit (CircuitGeneration.willFire_of_canFire' _ _ _) = Ob~_ ] =>
(rewrite interp_circuit_willFire_of_canFire_read0 ||
rewrite interp_circuit_willFire_of_canFire_read1 ||
rewrite interp_circuit_willFire_of_canFire_write0 ||
rewrite interp_circuit_willFire_of_canFire_write1);
[ .. | solve[cbn; rewrite ?lco_proof; intuition eauto] ]
| [ H: context[interp_circuit _ = _] |-
context[interp_circuit _] ] =>
rewrite H
| _ => progress rewrite ?negb_true_iff, ?negb_false_iff
end; cbn.
Ltac may_read_write_t :=
unfold may_read, may_write in *;
repeat match goal with
| _ => rewrite lco_proof in *
| _ => progress bool_cleanup
| [ H: log_rwdata_consistent _ ?regs |-
context [Bits.single (interp_circuit (_ (REnv.(getenv) ?regs ?idx)))] ] =>
specialize (H idx); cbv zeta in *; repeat cleanup_step
end.
Lemma circuit_gamma_equiv_CtxCons_rev {sig}:
forall (sz: nat) (Gamma: lcontext sig) (gamma: ccontext sig) v (c: circuit sz),
circuit_gamma_equiv (CtxCons sz v Gamma) (CtxCons sz c gamma) ->
circuit_gamma_equiv Gamma gamma.
Proof.
unfold circuit_gamma_equiv.
intros * Heq **; apply (Heq _ (MemberTl sz0 sz sig m)).
Qed.
Lemma circuit_gamma_equiv_ctl {sig}:
forall (sz: nat) (Gamma: lcontext (sz :: sig)) (gamma: ccontext (sz :: sig)),
circuit_gamma_equiv Gamma gamma ->
circuit_gamma_equiv (ctl Gamma) (ctl gamma).
Proof.
intros * Heq; eapply circuit_gamma_equiv_CtxCons_rev.
rewrite (ceqn Gamma), (ceqn gamma) in Heq; eassumption.
Qed.
Lemma circuit_gamma_equiv_creplace:
forall (sig : lsig) (sz: nat)
(m : member sz sig) (vGamma : lcontext sig)
(a : action_circuit CR CSigma REnv sz) (cGamma : ccontext sig) t,
interp_circuit (retVal a) = t ->
circuit_gamma_equiv vGamma cGamma -> circuit_gamma_equiv (creplace m t vGamma) (creplace m (retVal a) cGamma).
Proof.
unfold circuit_gamma_equiv; induction sig; intros.
- destruct (mdestruct m).
- destruct (eq_dec sz0 sz); subst;
try destruct (eq_dec m m0); subst.
all: rewrite ?cassoc_creplace_eq, ?cassoc_creplace_neq_k,
?cassoc_creplace_neq_members by congruence;
eauto.
Qed.
Definition ccontext_equiv {sig} (c0 c1 : ccontext sig) :=
forall (sz: nat) (m: member sz sig),
interp_circuit (cassoc m c0) = interp_circuit (cassoc m c1).
Lemma ccontext_equiv_sym {sig}:
forall (c0 c1: ccontext sig), ccontext_equiv c0 c1 <-> ccontext_equiv c1 c0.
Proof. firstorder. Qed.
Lemma ccontext_equiv_refl {sig}:
forall (c: ccontext sig), ccontext_equiv c c.
Proof. firstorder. Qed.
Lemma ccontext_equiv_cons {sig}:
forall sz (c0 c1: circuit _) (ctx0 ctx1: ccontext sig),
ccontext_equiv ctx0 ctx1 ->
interp_circuit c0 = interp_circuit c1 ->
ccontext_equiv (CtxCons sz c0 ctx0) (CtxCons sz c1 ctx1).
Proof.
unfold ccontext_equiv; intros.
destruct (mdestruct m) as [(Heq & ->) | (m' & ->)]; cbn.
inversion Heq; subst; rewrite <- Eqdep_dec.eq_rect_eq_dec by apply eq_dec; cbn.
all: eauto.
Qed.
Lemma circuit_gamma_equiv_ccontext_equiv {sig}:
forall (c0 c1: ccontext sig) (v: lcontext sig),
ccontext_equiv c0 c1 ->
circuit_gamma_equiv v c0 ->
circuit_gamma_equiv v c1.
Proof.
unfold circuit_gamma_equiv, ccontext_equiv; intros * Hcceq Hgammaeq **.
rewrite <- Hcceq, <- Hgammaeq; reflexivity.
Qed.
Notation mux_ccontext := (mux_ccontext lco).
Lemma ccontext_equiv_mux_ccontext {sig}:
forall (cond: circuit 1) (c0 c1: ccontext sig),
ccontext_equiv (if Bits.single (interp_circuit cond) then c0 else c1)
(mux_ccontext cond c0 c1).
Proof.
induction sig as [ | sz sig ]; cbn; intros;
rewrite (ceqn c0), (ceqn c1).
- destruct Bits.single; apply ccontext_equiv_refl.
- specialize (IHsig cond (ctl c0) (ctl c1)).
destruct Bits.single eqn:Heq; cbn;
apply ccontext_equiv_cons; cbn;
rewrite ?lco_proof; cbn;
rewrite ?Heq; eauto.
Qed.
Lemma mux_gamma_equiv_t:
forall (sig : lsig) (cond: circuit 1),
Bits.single (interp_circuit cond) = true ->
forall (v0 : lcontext sig) (c0 c1 : ccontext sig),
circuit_gamma_equiv v0 c0 ->
circuit_gamma_equiv v0 (mux_ccontext cond c0 c1).
Proof.