-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path04_papers-code-and-datasets.py
493 lines (417 loc) · 18.1 KB
/
04_papers-code-and-datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
"""
Input files:
papers_code.json
datasets.json
Output files:
papers_code.nt
datasets.nt
"""
from rdflib import Graph
from rdflib import URIRef, BNode, Literal
from rdflib.namespace import DCTERMS, RDF, RDFS, XSD, OWL, FOAF
import json
import re
import html2text
import markdown
#Path to methopapers_code.json and datasets.json input files
file_path_paper_code = '.../papers_code.json'
file_path_datasets = '.../datasets.json'
#Path to papers_code.nt and datasets.nt output files
ntriple_paper_code_output_file_path = ".../papers_code.nt"
ntriple_datasets_output_file_path = ".../datasets.nt"
replacements = [
{
"search": re.compile(r'"'),
"replace": '', # "
"comment": "Unescaped quotation marks"
}, {
"search": re.compile(r'\\'),
"replace": '', # \
"comment": "Unescaped backslash"
}, {
"search": re.compile(r'\n'),
"replace": '',
"comment": "Newline string"
}, {
"search": re.compile(r'\b'),
"replace": '',
"comment": "Newline string"
}, {
"search": re.compile(r'\t'),
"replace": '',
"comment": "Newline string"
}, {
"search": re.compile(r'\r'),
"replace": '',
"comment": "Newline string"
}, {
"search": re.compile(r'\f'),
"replace": '',
"comment": "Newline string"
}
]
replacements_url = [
{
"search": re.compile(r'"'),
"replace": '%22',
"comment": "Unescaped quotation mark in URI"
}, {
"search": re.compile(r'\\'),
"replace": '%5c',
"comment": "Unescaped backslash in URI"
}, {
"search": re.compile(r'\n'),
"replace": '',
"comment": "Newline string"
}, {
"search": re.compile(r'\r'),
"replace": '',
"comment": "Newline string"
}, {
"search": re.compile(r'\t'),
"replace": '',
"comment": "Newline string"
},
]
replacements_uri = [
{
"search": re.compile(r'"'),
"replace": '%22',
"comment": "Unescaped quotation mark in URI"
}, {
"search": re.compile(r'\\'),
"replace": '%5c',
"comment": "Unescaped backslash in URI"
}, {
"search": re.compile(r'\n'),
"replace": '',
"comment": "Newline string"
}, {
"search": re.compile(r'\r'),
"replace": '',
"comment": "Newline string"
}, {
"search": re.compile(r'\t'),
"replace": '',
"comment": "Newline string"
}, {
"search": re.compile(r'\^'),
"replace": '',
"comment": "caret"
}, {
"search": re.compile(r'\$'),
"replace": '',
"comment": "Dollar sign"
}, {
"search": re.compile(r'\{'),
"replace": '',
"comment": "Opening curly brace"
}, {
"search": re.compile(r'\}'),
"replace": '',
"comment": "Closing curly brace"
}, {
"search": re.compile(r'\('),
"replace": '',
"comment": "Opening parenthesis"
}, {
"search": re.compile(r'\)'),
"replace": '',
"comment": "Closing parenthesis"
}, {
"search": re.compile(r':'),
"replace": '',
"comment": "Colon"
}, {
"search": re.compile(r','),
"replace": '',
"comment": "Comma"
}, {
"search": re.compile(r'>'),
"replace": '',
"comment": "Greater than"
}, {
"search": re.compile(r'<'),
"replace": '',
"comment": "Less than"
}, {
"search": re.compile(r'---'),
"replace": '',
"comment": "Triple dash"
}, {
"search": re.compile(r'--'),
"replace": '',
"comment": "Double dash"
}, {
"search": re.compile(r'\+'),
"replace": '',
"comment": "Plus sign"
}, {
"search": re.compile(r'\['),
"replace": '',
"comment": "Opening square bracket"
}, {
"search": re.compile(r'\]'),
"replace": '',
"comment": "Closing square bracket"
}, {
"search": re.compile(r'\|'),
"replace": '',
"comment": "Pipe"
}, {
"search": re.compile(r'%'),
"replace": '',
"comment": "Percent sign"
}, {
"search": re.compile(r'\xa0'),
"replace": '',
"comment": "Non-breaking space"
}, {
"search": re.compile(r'!'),
"replace": '',
"comment": "Exclamation mark"
}, {
"search": re.compile(r'\s'),
"replace": '',
"comment": "Whitespace"
}, {
"search": re.compile(r'%22'),
"replace": '',
"comment": "Quotation mark"
}, {
"search": re.compile(r'#'),
"replace": '',
"comment": "Hash"
}, {
"search": re.compile(r'@'),
"replace": '',
"comment": "At sign"
}, {
"search": re.compile(r'\*'),
"replace": '',
"comment": "Asterisk"
}
]
def clean(nameStr):
cleaned_str = nameStr
for r in replacements:
if re.search(r["search"], nameStr):
cleaned_str = re.sub(r["search"], r["replace"], cleaned_str)
return cleaned_str
def clean_url(nameStr):
cleaned_str = nameStr
for r in replacements_url:
if re.search(r["search"], nameStr):
cleaned_str = re.sub(r["search"], r["replace"], cleaned_str)
return cleaned_str
def clean_uri(nameStr):
cleaned_str = nameStr
for r in replacements_uri:
if re.search(r["search"], nameStr):
cleaned_str = re.sub(r["search"], r["replace"], cleaned_str)
return cleaned_str
def convert_markdown_to_plain_text(md_string):
html = markdown.markdown(md_string)
text_maker = html2text.HTML2Text()
text_maker.ignore_links = True
text_maker.ignore_images = True
text_maker.ignore_emphasis = True
plain_text = text_maker.handle(html)
return plain_text
#Info for namespaces used in LinkedPapersWithCode
lpwc_namespace = "https://linkedpaperswithcode.com"
lpwc_namespace_class = "https://linkedpaperswithcode.com/class"
lpwc_paper_class = URIRef(lpwc_namespace_class + "/paper")
lpwc_task_class = URIRef(lpwc_namespace_class + "/task")
lpwc_repository_class = URIRef(lpwc_namespace_class + "/repository")
lpwc_dataset_class = URIRef(lpwc_namespace_class + "/dataset")
lpwc_dataloader_class = URIRef(lpwc_namespace_class + "/dataloader")
lpwc_repositoryreferences_class = URIRef(lpwc_namespace_class + "/repositoryreferences")
#LinkedPapersWithCode classes used in this file
lpwc_paper = URIRef(lpwc_namespace + "/paper/")
lpwc_task = URIRef(lpwc_namespace + "/task/")
lpwc_repository = URIRef(lpwc_namespace + "/repository/")
lpwc_dataset = URIRef(lpwc_namespace + "/dataset/")
lpwc_data_loader = URIRef(lpwc_namespace + "/dataloader/")
lpwc_repository_references = URIRef(lpwc_namespace + "/repositoryreferences/")
#LinkedPapersWithCode predicates used in this file
has_repository = URIRef("https://linkedpaperswithcode.com/property/hasRepository")
has_official_repository = URIRef("https://linkedpaperswithcode.com/property/hasOfficialRepository")
has_url = URIRef("http://purl.org/spar/fabio/hasURL")
paper_mentions_repository = URIRef("https://linkedpaperswithcode.com/property/paperMentionsRepository")
repository_mentions_paper = URIRef("https://linkedpaperswithcode.com/property/repositoryMentionsPaper")
has_framework = URIRef("https://linkedpaperswithcode.com/property/hasFramework")
has_full_name = URIRef("http://dbpedia.org/property/fullname")
introduced_by = URIRef("https://linkedpaperswithcode.com/property/introducedBy")
has_modality = URIRef("https://linkedpaperswithcode.com/property/modality")
used_for_task = URIRef("https://linkedpaperswithcode.com/property/usedForTask")
has_variant = URIRef("https://linkedpaperswithcode.com/property/hasVariant")
num_papers = URIRef("https://linkedpaperswithcode.com/property/numberPapers")
has_data_loader = URIRef("https://linkedpaperswithcode.com/property/hasDataLoader")
has_repo_reference = URIRef("https://linkedpaperswithcode.com/property/hasRepositoryReferences")
introduced_by_url = URIRef("https://linkedpaperswithcode.com/property/introducedByUrl")
#papers_code.json
lpwc_graph = Graph()
repo_uri_list = []
i = 0
with open(ntriple_paper_code_output_file_path, "w", encoding="utf-8") as g:
# JSON-Datei öffnen und als Liste von Objekten laden
with open(file_path_paper_code, 'r') as file:
paper_code = json.load(file)
for paper_code_entry in paper_code:
#paper_url paper_uri
paper_id = paper_code_entry["paper_url"].replace("https://paperswithcode.com/paper/", "")
paper_uri = URIRef(lpwc_paper + paper_id)
#repo_url repo_uri
repo_url = clean_url(paper_code_entry["repo_url"])
repo_id = clean_uri(paper_code_entry["repo_url"]).replace("https//", "").replace("http//", "")
repo_id = repo_id.lower()
repo_uri = URIRef(lpwc_repository + repo_id)
#Auxiliary class for n-array relations (repositoryreferences)
repo_references_uri = URIRef(lpwc_repository_references + paper_id + "/" + repo_id)
lpwc_graph.add((repo_references_uri, RDF.type, lpwc_repositoryreferences_class))
lpwc_graph.add((paper_uri, has_repo_reference, repo_references_uri))
lpwc_graph.add((repo_references_uri, has_repository, repo_uri))
if not repo_uri in repo_uri_list:
repo_uri_list.append(repo_uri)
lpwc_graph.add((repo_uri, RDF.type, lpwc_repository_class))
lpwc_graph.add((repo_uri, has_url, Literal(repo_url, datatype=XSD.anyURI)))
#framework
if paper_code_entry["framework"] != "none":
framework_name = clean(paper_code_entry["framework"])
lpwc_graph.add((repo_uri, has_framework, Literal(framework_name, datatype=XSD.string)))
#is_official
if paper_code_entry["is_official"] == True:
lpwc_graph.add((paper_uri, has_official_repository, repo_uri))
if paper_code_entry["is_official"] == False:
lpwc_graph.add((paper_uri, has_repository, repo_uri))
#mentioned_in_paper (in repositoryreferences)
if paper_code_entry["mentioned_in_paper"] == True:
lpwc_graph.add((repo_references_uri, paper_mentions_repository, Literal(True, datatype=XSD.boolean)))
if paper_code_entry["mentioned_in_paper"] == False:
lpwc_graph.add((repo_references_uri, paper_mentions_repository, Literal(False, datatype=XSD.boolean)))
#mentioned_in_github (in repositoryreferences)
if paper_code_entry["mentioned_in_github"] == True:
lpwc_graph.add((repo_references_uri, repository_mentions_paper, Literal(True, datatype=XSD.boolean)))
if paper_code_entry["mentioned_in_github"] == False:
lpwc_graph.add((repo_references_uri, repository_mentions_paper, Literal(False, datatype=XSD.boolean)))
i += 1
if i % 2000 == 0:
print('Processed {} paper_code entities'.format(i))
if i % 100 == 0:
g.write(lpwc_graph.serialize(format='nt'))
lpwc_graph = Graph()
# Write the last part
if not i % 100 == 0:
g.write(lpwc_graph.serialize(format='nt'))
lpwc_graph = Graph()
g.close()
#datasets.json
lpwc_graph = Graph()
i = 0
with open(ntriple_datasets_output_file_path, "w", encoding="utf-8") as g:
# JSON-Datei öffnen und als Liste von Objekten laden
with open(file_path_datasets, 'r') as file:
datasets = json.load(file)
for dataset in datasets:
#dataset-id
dataset_id = dataset["url"].replace("https://paperswithcode.com/dataset/", "")
dataset_uri = URIRef(lpwc_dataset + dataset_id)
lpwc_graph.add((dataset_uri, RDF.type, lpwc_dataset_class))
#name
if dataset["name"] != "" and dataset["name"] is not None:
dataset_name = dataset["name"]
dataset_name = clean(dataset_name)
lpwc_graph.add((dataset_uri, DCTERMS.title, Literal(dataset_name, datatype=XSD.string)))
#full_name
if dataset["full_name"] != "" and dataset["full_name"] is not None:
dataset_full_name = dataset["full_name"]
dataset_full_name = clean(dataset_full_name)
lpwc_graph.add((dataset_uri, has_full_name, Literal(dataset_full_name, datatype=XSD.string)))
#homepage
if dataset["homepage"] != "" and dataset["homepage"] is not None:
dataset_homepage = dataset["homepage"]
dataset_homepage = clean_url(dataset_homepage)
lpwc_graph.add((dataset_uri, FOAF.homepage, Literal(dataset_homepage, datatype=XSD.anyURI)))
#description
if dataset["description"] != "" and dataset["description"] is not None:
dataset_description = dataset["description"]
dataset_description = convert_markdown_to_plain_text(dataset_description)
dataset_description = clean(dataset_description)
lpwc_graph.add((dataset_uri, DCTERMS.description, Literal(dataset_description, datatype=XSD.string)))
#paper
if dataset["paper"] != None:
if dataset["paper"]["url"].startswith("https://paperswithcode.com/paper/"):
paper_id = dataset["paper"]["url"].replace("https://paperswithcode.com/paper/", "")
paper_uri = URIRef(lpwc_paper + paper_id)
lpwc_graph.add((dataset_uri, introduced_by, paper_uri))
else:
paper_url = clean_url(dataset["paper"]["url"])
lpwc_graph.add((dataset_uri, introduced_by_url, Literal(paper_url, datatype=XSD.anyURI)))
#introduced_date
if dataset["introduced_date"] != "" and dataset["introduced_date"] is not None:
dataset_introduced_date = dataset["introduced_date"]
lpwc_graph.add((dataset_uri, DCTERMS.issued, Literal(dataset_introduced_date, datatype=XSD.date)))
#warnings (not relevant)
#modalities
if dataset["modalities"] != []:
for modality in dataset["modalities"]:
modality = clean(modality)
lpwc_graph.add((dataset_uri, has_modality, Literal(modality, datatype=XSD.string)))
#tasks
if dataset["tasks"] != []:
for task in dataset["tasks"]:
task_id = task["url"].replace("https://paperswithcode.com/task/", "")
task_uri = URIRef(lpwc_task + task_id)
lpwc_graph.add((dataset_uri, used_for_task, task_uri))
#languages
if dataset["languages"] != []:
for language in dataset["languages"]:
language = clean(language)
lpwc_graph.add((dataset_uri, DCTERMS.language, Literal(language, datatype=XSD.string)))
#variants
if dataset["variants"] != []:
for variant in dataset["variants"]:
variant = clean(variant)
lpwc_graph.add((dataset_uri, has_variant, Literal(variant, datatype=XSD.string)))
#num_papers
if dataset["num_papers"] is not None:
dataset_num_papers = dataset["num_papers"]
lpwc_graph.add((dataset_uri, num_papers, Literal(dataset_num_papers, datatype=XSD.integer)))
#data_loaders
if dataset["data_loaders"] != []:
for data_loader in dataset["data_loaders"]:
if data_loader["url"] != "" and data_loader["url"] is not None:
data_loader_url = clean_url(data_loader["url"])
data_loader_id = clean_uri(data_loader["url"]).replace("https//", "").replace("http//", "")
data_loader_uri = URIRef(lpwc_data_loader + data_loader_id)
lpwc_graph.add((data_loader_uri, RDF.type, lpwc_dataloader_class))
lpwc_graph.add((data_loader_uri, FOAF.homepage, Literal(data_loader_url, datatype=XSD.anyURI)))
lpwc_graph.add((dataset_uri, has_data_loader, data_loader_uri))
if data_loader["repo"] != "" and data_loader["repo"] is not None:
data_loader_repo_url = clean_url(data_loader["repo"])
data_loader_repo_id = clean_uri(data_loader["repo"]).replace("https//", "").replace("http//", "")
data_loader_repo_uri = URIRef(lpwc_repository + data_loader_repo_id)
#Überprüfen ob es Reposirory schon gibt
if not data_loader_repo_uri in repo_uri_list:
lpwc_graph.add((data_loader_repo_uri, RDF.type, lpwc_repository_class))
lpwc_graph.add((data_loader_repo_uri, has_url, Literal(data_loader_repo_url, datatype=XSD.anyURI)))
lpwc_graph.add((data_loader_uri, has_repository, data_loader_repo_uri))
if data_loader["frameworks"] != []:
for framework in data_loader["frameworks"]:
framework = clean(framework)
lpwc_graph.add((data_loader_repo_uri, has_framework, Literal(framework, datatype=XSD.string)))
else:
lpwc_graph.add((data_loader_uri, has_repository, data_loader_repo_uri))
i += 1
if i % 1000 == 0:
print('Processed {} dataset entities'.format(i))
if i % 100 == 0:
g.write(lpwc_graph.serialize(format='nt'))
lpwc_graph = Graph()
#write the last part
if not i % 100 == 0:
g.write(lpwc_graph.serialize(format='nt'))
lpwc_graph = Graph()
g.close()
print("Done")