forked from JishinMaster/simd_utils
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsimd_utils_sse_int32.h
874 lines (766 loc) · 35.4 KB
/
simd_utils_sse_int32.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
/*
* Project : SIMD_Utils
* Version : 0.2.5
* Author : JishinMaster
* Licence : BSD-2
*/
#pragma once
#include <stdint.h>
#ifndef ARM
#include <immintrin.h>
#else
#include "sse2neon_wrapper.h"
#endif
static inline void add128s(int32_t *src1, int32_t *src2, int32_t *dst, int len)
{
int stop_len = len / SSE_LEN_INT32;
stop_len *= SSE_LEN_INT32;
if (areAligned3((uintptr_t) (src1), (uintptr_t) (src2), (uintptr_t) (dst), SSE_LEN_BYTES)) {
for (int i = 0; i < stop_len; i += SSE_LEN_INT32) {
_mm_store_si128((__m128i *) (dst + i), _mm_add_epi32(_mm_load_si128((__m128i *) (src1 + i)),
_mm_load_si128((__m128i *) (src2 + i))));
}
} else {
for (int i = 0; i < stop_len; i += SSE_LEN_INT32) {
_mm_storeu_si128((__m128i *) (dst + i), _mm_add_epi32(_mm_loadu_si128((__m128i *) (src1 + i)),
_mm_loadu_si128((__m128i *) (src2 + i))));
}
}
for (int i = stop_len; i < len; i++) {
dst[i] = src1[i] + src2[i];
}
}
// Works only for Integers stored on 32bits smaller than 16bits
static inline void mul128s(int32_t *src1, int32_t *src2, int32_t *dst, int len)
{
int stop_len = len / (2 * SSE_LEN_INT32);
stop_len *= (2 * SSE_LEN_INT32);
if (areAligned3((uintptr_t) (src1), (uintptr_t) (src2), (uintptr_t) (dst), SSE_LEN_BYTES)) {
for (int i = 0; i < stop_len; i += 2 * SSE_LEN_INT32) {
v4si src1_tmp = _mm_load_si128((__m128i *) (src1 + i));
v4si src2_tmp = _mm_load_si128((__m128i *) (src2 + i));
v4si src1_tmp2 = _mm_load_si128((__m128i *) (src1 + i + SSE_LEN_INT32));
v4si src2_tmp2 = _mm_load_si128((__m128i *) (src2 + i + SSE_LEN_INT32));
v4si tmp = _mm_mullo_epi32(src1_tmp, src2_tmp);
v4si tmp2 = _mm_mullo_epi32(src1_tmp2, src2_tmp2);
_mm_store_si128((__m128i *) (dst + i), tmp);
_mm_store_si128((__m128i *) (dst + i + SSE_LEN_INT32), tmp2);
}
} else {
for (int i = 0; i < stop_len; i += 2 * SSE_LEN_INT32) {
v4si src1_tmp = _mm_loadu_si128((__m128i *) (src1 + i));
v4si src2_tmp = _mm_loadu_si128((__m128i *) (src2 + i));
v4si src1_tmp2 = _mm_loadu_si128((__m128i *) (src1 + i + SSE_LEN_INT32));
v4si src2_tmp2 = _mm_loadu_si128((__m128i *) (src2 + i + SSE_LEN_INT32));
v4si tmp = _mm_mullo_epi32(src1_tmp, src2_tmp);
v4si tmp2 = _mm_mullo_epi32(src1_tmp2, src2_tmp2);
_mm_storeu_si128((__m128i *) (dst + i), tmp);
_mm_storeu_si128((__m128i *) (dst + i + SSE_LEN_INT32), tmp2);
}
}
for (int i = stop_len; i < len; i++) {
dst[i] = src1[i] * src2[i];
}
}
static inline void sub128s(int32_t *src1, int32_t *src2, int32_t *dst, int len)
{
int stop_len = len / SSE_LEN_INT32;
stop_len *= SSE_LEN_INT32;
if (areAligned3((uintptr_t) (src1), (uintptr_t) (src2), (uintptr_t) (dst), SSE_LEN_BYTES)) {
for (int i = 0; i < stop_len; i += SSE_LEN_INT32) {
_mm_store_si128((__m128i *) (dst + i), _mm_sub_epi32(_mm_load_si128((__m128i *) (src1 + i)),
_mm_load_si128((__m128i *) (src2 + i))));
}
} else {
for (int i = 0; i < stop_len; i += SSE_LEN_INT32) {
_mm_storeu_si128((__m128i *) (dst + i), _mm_sub_epi32(_mm_loadu_si128((__m128i *) (src1 + i)),
_mm_loadu_si128((__m128i *) (src2 + i))));
}
}
for (int i = stop_len; i < len; i++) {
dst[i] = src1[i] - src2[i];
}
}
static inline void addc128s(int32_t *src, int32_t value, int32_t *dst, int len)
{
int stop_len = len / SSE_LEN_INT32;
stop_len *= SSE_LEN_INT32;
const v4si tmp = _mm_set1_epi32(value);
if (areAligned2((uintptr_t) (src), (uintptr_t) (dst), SSE_LEN_BYTES)) {
for (int i = 0; i < stop_len; i += SSE_LEN_INT32) {
_mm_store_si128((__m128i *) (dst + i), _mm_add_epi32(tmp, _mm_load_si128((__m128i *) (src + i))));
}
} else {
for (int i = 0; i < stop_len; i += SSE_LEN_INT32) {
_mm_storeu_si128((__m128i *) (dst + i), _mm_add_epi32(tmp, _mm_loadu_si128((__m128i *) (src + i))));
}
}
for (int i = stop_len; i < len; i++) {
dst[i] = src[i] + value;
}
}
static inline void vectorSlope128s(int *dst, int len, int offset, int slope)
{
v4si coef = _mm_set_epi32(3 * slope, 2 * slope, slope, 0);
v4si slope8_vec = _mm_set1_epi32(8 * slope);
v4si curVal = _mm_add_epi32(_mm_set1_epi32(offset), coef);
v4si curVal2 = _mm_add_epi32(_mm_set1_epi32(offset), coef);
curVal2 = _mm_add_epi32(curVal2, _mm_set1_epi32(4 * slope));
int stop_len = len / (2 * SSE_LEN_INT32);
stop_len *= (2 * SSE_LEN_INT32);
if (isAligned((uintptr_t) (dst), SSE_LEN_BYTES)) {
_mm_store_si128((__m128i *) dst, curVal);
_mm_store_si128((__m128i *) (dst + SSE_LEN_INT32), curVal2);
} else {
_mm_storeu_si128((__m128i *) dst, curVal);
_mm_storeu_si128((__m128i *) (dst + SSE_LEN_INT32), curVal2);
}
if (isAligned((uintptr_t) (dst), SSE_LEN_BYTES)) {
for (int i = 2 * SSE_LEN_INT32; i < stop_len; i += 2 * SSE_LEN_INT32) {
curVal = _mm_add_epi32(curVal, slope8_vec);
_mm_store_si128((__m128i *) (dst + i), curVal);
curVal2 = _mm_add_epi32(curVal2, slope8_vec);
_mm_store_si128((__m128i *) (dst + i + SSE_LEN_INT32), curVal2);
}
} else {
for (int i = 2 * SSE_LEN_INT32; i < stop_len; i += 2 * SSE_LEN_INT32) {
curVal = _mm_add_epi32(curVal, slope8_vec);
_mm_storeu_si128((__m128i *) (dst + i), curVal);
curVal2 = _mm_add_epi32(curVal2, slope8_vec);
_mm_storeu_si128((__m128i *) (dst + i + SSE_LEN_INT32), curVal2);
}
}
for (int i = stop_len; i < len; i++) {
dst[i] = offset + slope * i;
}
}
static inline void sum128s(int32_t *src, int32_t *dst, int len)
{
int stop_len = len / (2 * SSE_LEN_INT32);
stop_len *= (2 * SSE_LEN_INT32);
__attribute__((aligned(SSE_LEN_BYTES))) int32_t accumulate[SSE_LEN_INT32] = {0, 0, 0, 0};
int32_t tmp_acc = 0;
v4si vec_acc1 = _mm_setzero_si128(); // initialize the vector accumulator
v4si vec_acc2 = _mm_setzero_si128(); // initialize the vector accumulator
if (areAligned2((uintptr_t) (src), (uintptr_t) (dst), SSE_LEN_BYTES)) {
for (int i = 0; i < stop_len; i += 2 * SSE_LEN_INT32) {
v4si vec_tmp1 = _mm_load_si128((__m128i *) (src + i));
vec_acc1 = _mm_add_epi32(vec_acc1, vec_tmp1);
v4si vec_tmp2 = _mm_load_si128((__m128i *) (src + i + SSE_LEN_INT32));
vec_acc2 = _mm_add_epi32(vec_acc2, vec_tmp2);
}
} else {
for (int i = 0; i < stop_len; i += 2 * SSE_LEN_INT32) {
v4si vec_tmp1 = _mm_loadu_si128((__m128i *) (src + i));
vec_acc1 = _mm_add_epi32(vec_acc1, vec_tmp1);
v4si vec_tmp2 = _mm_load_si128((__m128i *) (src + i + SSE_LEN_INT32));
vec_acc2 = _mm_add_epi32(vec_acc2, vec_tmp2);
}
}
vec_acc1 = _mm_add_epi32(vec_acc1, vec_acc2);
_mm_store_si128((__m128i *) accumulate, vec_acc1);
for (int i = stop_len; i < len; i++) {
tmp_acc += src[i];
}
tmp_acc = tmp_acc + accumulate[0] + accumulate[1] + accumulate[2] + accumulate[3];
*dst = tmp_acc;
}
// Experimental
static inline void copy128s(int32_t *src, int32_t *dst, int len)
{
int stop_len = len / SSE_LEN_INT32;
stop_len *= SSE_LEN_INT32;
#ifdef OMP
#pragma omp parallel for schedule(auto)
#endif
for (int i = 0; i < stop_len; i += SSE_LEN_INT32) {
_mm_store_si128((__m128i *) (dst + i), _mm_load_si128((__m128i *) (src + i)));
}
for (int i = stop_len; i < len; i++) {
dst[i] = src[i];
}
}
static inline void copy128s_2(int32_t *src, int32_t *dst, int len)
{
int stop_len = len / (2 * SSE_LEN_INT32);
stop_len *= (2 * SSE_LEN_INT32);
#ifdef OMP
#pragma omp parallel for schedule(auto)
#endif
for (int i = 0; i < stop_len; i += 2 * SSE_LEN_INT32) {
__m128i tmp1 = _mm_load_si128((__m128i *) (src + i));
__m128i tmp2 = _mm_load_si128((__m128i *) (src + i + SSE_LEN_INT32));
_mm_store_si128((__m128i *) (dst + i), tmp1);
_mm_store_si128((__m128i *) (dst + i + SSE_LEN_INT32), tmp2);
}
for (int i = stop_len; i < len; i++) {
dst[i] = src[i];
}
}
static inline void fast_copy128s(int32_t *src, int32_t *dst, int len)
{
int stop_len = len / SSE_LEN_INT32;
stop_len *= SSE_LEN_INT32;
#ifdef OMP
#pragma omp parallel for schedule(auto)
#endif
for (int i = 0; i < stop_len; i += SSE_LEN_INT32) {
_mm_stream_si128((__m128i *) (dst + i), _mm_stream_load_si128((__m128i *) (src + i)));
}
_mm_mfence();
for (int i = stop_len; i < len; i++) {
dst[i] = src[i];
}
}
static inline void fast_copy128s_2(int32_t *src, int32_t *dst, int len)
{
int stop_len = len / (2 * SSE_LEN_INT32);
stop_len *= (2 * SSE_LEN_INT32);
#ifdef OMP
#pragma omp parallel for schedule(auto)
#endif
for (int i = 0; i < stop_len; i += 2 * SSE_LEN_INT32) {
__m128i tmp1 = _mm_stream_load_si128((__m128i *) (src + i));
__m128i tmp2 = _mm_stream_load_si128((__m128i *) (src + i + SSE_LEN_INT32));
_mm_stream_si128((__m128i *) (dst + i), tmp1);
_mm_stream_si128((__m128i *) (dst + i + SSE_LEN_INT32), tmp2);
}
_mm_mfence();
for (int i = stop_len; i < len; i++) {
dst[i] = src[i];
}
}
static inline void fast_copy128s_4(int32_t *src, int32_t *dst, int len)
{
int stop_len = len / (4 * SSE_LEN_INT32);
stop_len *= (4 * SSE_LEN_INT32);
#ifdef OMP
#pragma omp parallel for schedule(auto)
#endif
for (int i = 0; i < stop_len; i += 4 * SSE_LEN_INT32) {
__m128i tmp1 = _mm_stream_load_si128((__m128i *) (src + i));
__m128i tmp2 = _mm_stream_load_si128((__m128i *) (src + i + SSE_LEN_INT32));
__m128i tmp3 = _mm_stream_load_si128((__m128i *) (src + i + 2 * SSE_LEN_INT32));
__m128i tmp4 = _mm_stream_load_si128((__m128i *) (src + i + 3 * SSE_LEN_INT32));
_mm_stream_si128((__m128i *) (dst + i), tmp1);
_mm_stream_si128((__m128i *) (dst + i + SSE_LEN_INT32), tmp2);
_mm_stream_si128((__m128i *) (dst + i + 2 * SSE_LEN_INT32), tmp3);
_mm_stream_si128((__m128i *) (dst + i + 3 * SSE_LEN_INT32), tmp4);
}
_mm_mfence();
for (int i = stop_len; i < len; i++) {
dst[i] = src[i];
}
}
// Adapted from NEON2SSE (does not exists for X86)
static inline __m128i _mm_absdiff_epi16(__m128i a, __m128i b)
{
#ifndef ARM
__m128i cmp, difab, difba;
cmp = _mm_cmpgt_epi16(a, b);
difab = _mm_sub_epi16(a, b);
difba = _mm_sub_epi16(b, a);
#if 1 // should be faster
return _mm_blendv_epi8(difba, difab, cmp);
#else
difab = _mm_and_si128(cmp, difab);
difba = _mm_andnot_si128(cmp, difba);
return _mm_or_si128(difab, difba);
#endif
#else
return vreinterpretq_m128i_s16(vabdq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
#endif
}
// Adapted from NEON2SSE (does not exists for X86)
static inline __m128i _mm_absdiff_epi32(__m128i a, __m128i b)
{
#ifndef ARM
__m128i cmp, difab, difba;
cmp = _mm_cmpgt_epi32(a, b);
difab = _mm_sub_epi32(a, b);
difba = _mm_sub_epi32(b, a);
#if 1 // should be faster
return _mm_blendv_epi8(difba, difab, cmp);
#else
difab = _mm_and_si128(cmp, difab);
difba = _mm_andnot_si128(cmp, difba);
return _mm_or_si128(difab, difba);
#endif
#else
return vreinterpretq_m128i_s32(vabdq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
#endif
}
static inline __m128i _mm_absdiff_epi8(__m128i a, __m128i b)
{
#ifndef ARM
__m128i cmp, difab, difba;
cmp = _mm_cmpgt_epi8(a, b);
difab = _mm_sub_epi8(a, b);
difba = _mm_sub_epi8(b, a);
#if 1 // should be faster
return _mm_blendv_epi8(difba, difab, cmp);
#else
difab = _mm_and_si128(cmp, difab);
difba = _mm_andnot_si128(cmp, difba);
return _mm_or_si128(difab, difba);
#endif
#else
return vreinterpretq_m128i_s8(vabdq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
#endif
}
static inline void absdiff16s_128s(int16_t *src1, int16_t *src2, int16_t *dst, int len)
{
int stop_len = len / SSE_LEN_INT16;
stop_len *= SSE_LEN_INT16;
if (areAligned3((uintptr_t) (src1), (uintptr_t) (src2), (uintptr_t) (dst), SSE_LEN_BYTES)) {
for (int i = 0; i < stop_len; i += SSE_LEN_INT16) {
__m128i a = _mm_load_si128((__m128i *) (src1 + i));
__m128i b = _mm_load_si128((__m128i *) (src2 + i));
_mm_store_si128((__m128i *) (dst + i), _mm_absdiff_epi16(a, b));
}
} else {
for (int i = 0; i < stop_len; i += SSE_LEN_INT16) {
__m128i a = _mm_loadu_si128((__m128i *) (src1 + i));
__m128i b = _mm_loadu_si128((__m128i *) (src2 + i));
_mm_storeu_si128((__m128i *) (dst + i), _mm_absdiff_epi16(a, b));
}
}
for (int i = stop_len; i < len; i++) {
dst[i] = abs(src1[i] - src2[i]);
}
}
/*
static inline void print8i(__m128i v)
{
int16_t *p = (int16_t *) &v;
#ifndef __SSE2__
_mm_empty();
#endif
printf("[%d, %d, %d, %d,%d, %d, %d, %d]", p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7]);
}*/
static inline void powerspect16s_128s_interleaved(complex16s_t *src, int32_t *dst, int len)
{
int stop_len = len / SSE_LEN_INT32;
stop_len *= SSE_LEN_INT32;
int j = 0;
if (areAligned2((uintptr_t) (src), (uintptr_t) (dst), SSE_LEN_BYTES)) {
for (int i = 0; i < stop_len; i += SSE_LEN_INT32) {
__m128i reim = _mm_load_si128((__m128i *) ((const int16_t *) src + j));
// print8i(reim); printf("\n");
_mm_store_si128((__m128i *) (dst + i), _mm_madd_epi16(reim, reim));
j += SSE_LEN_INT16;
}
} else {
for (int i = 0; i < stop_len; i += SSE_LEN_INT32) {
__m128i reim = _mm_loadu_si128((__m128i *) ((const int16_t *) src + j));
_mm_storeu_si128((__m128i *) (dst + i), _mm_madd_epi16(reim, reim));
j += SSE_LEN_INT16;
}
}
for (int i = stop_len; i < len; i++) {
dst[i] = (int32_t) src[i].re * (int32_t) src[i].re + (int32_t) src[i].im * (int32_t) src[i].im;
}
}
// Works with positive scale_factor (divides final value)
static inline void sum16s32s128(int16_t *src, int len, int32_t *dst, int scale_factor)
{
int stop_len = len / (4 * SSE_LEN_INT16);
stop_len *= (4 * SSE_LEN_INT16);
__attribute__((aligned(SSE_LEN_BYTES))) int32_t accumulate[SSE_LEN_INT32];
int32_t tmp_acc = 0;
int16_t scale = 1 << scale_factor;
v4si one = _mm_set1_epi16(1);
v4si vec_acc1 = _mm_setzero_si128(); // initialize the vector accumulator
v4si vec_acc2 = _mm_setzero_si128(); // initialize the vector accumulator
if (isAligned((uintptr_t) (src), SSE_LEN_BYTES)) {
for (int i = 0; i < stop_len; i += 4 * SSE_LEN_INT16) {
v4si vec_src_tmp = _mm_load_si128((__m128i *) ((const int16_t *) src + i));
v4si vec_src_tmp2 = _mm_load_si128((__m128i *) ((const int16_t *) src + i + SSE_LEN_INT16));
v4si vec_src_tmp3 = _mm_load_si128((__m128i *) ((const int16_t *) src + i + 2 * SSE_LEN_INT16));
v4si vec_src_tmp4 = _mm_load_si128((__m128i *) ((const int16_t *) src + i + 3 * SSE_LEN_INT16));
vec_src_tmp = _mm_madd_epi16(vec_src_tmp, one);
vec_src_tmp2 = _mm_madd_epi16(vec_src_tmp2, one);
vec_src_tmp3 = _mm_madd_epi16(vec_src_tmp3, one);
vec_src_tmp4 = _mm_madd_epi16(vec_src_tmp4, one);
vec_src_tmp = _mm_add_epi32(vec_src_tmp, vec_src_tmp2);
vec_src_tmp3 = _mm_add_epi32(vec_src_tmp3, vec_src_tmp4);
vec_acc1 = _mm_add_epi32(vec_src_tmp, vec_acc1);
vec_acc2 = _mm_add_epi32(vec_src_tmp3, vec_acc2);
}
} else {
for (int i = 0; i < stop_len; i += 4 * SSE_LEN_INT16) {
v4si vec_src_tmp = _mm_loadu_si128((__m128i *) ((const int16_t *) src + i));
v4si vec_src_tmp2 = _mm_loadu_si128((__m128i *) ((const int16_t *) src + i + SSE_LEN_INT16));
v4si vec_src_tmp3 = _mm_loadu_si128((__m128i *) ((const int16_t *) src + i + 2 * SSE_LEN_INT16));
v4si vec_src_tmp4 = _mm_loadu_si128((__m128i *) ((const int16_t *) src + i + 3 * SSE_LEN_INT16));
vec_src_tmp = _mm_madd_epi16(vec_src_tmp, one);
vec_src_tmp2 = _mm_madd_epi16(vec_src_tmp2, one);
vec_src_tmp3 = _mm_madd_epi16(vec_src_tmp3, one);
vec_src_tmp4 = _mm_madd_epi16(vec_src_tmp4, one);
vec_src_tmp = _mm_add_epi32(vec_src_tmp, vec_src_tmp2);
vec_src_tmp3 = _mm_add_epi32(vec_src_tmp3, vec_src_tmp4);
vec_acc1 = _mm_add_epi32(vec_src_tmp, vec_acc1);
vec_acc2 = _mm_add_epi32(vec_src_tmp3, vec_acc2);
}
}
vec_acc1 = _mm_add_epi32(vec_acc1, vec_acc2);
_mm_store_si128((__m128i *) accumulate, vec_acc1);
for (int i = stop_len; i < len; i++) {
tmp_acc += (int32_t) src[i];
}
tmp_acc = tmp_acc + accumulate[0] + accumulate[1] + accumulate[2] + accumulate[3];
tmp_acc /= scale;
*dst = tmp_acc;
}
static inline void flip128s(int32_t *src, int32_t *dst, int len)
{
int stop_len = len / (2 * SSE_LEN_INT32);
stop_len *= (2 * SSE_LEN_INT32);
int mini = ((len - 1) < (2 * SSE_LEN_INT32)) ? (len - 1) : (2 * SSE_LEN_INT32);
for (int i = 0; i < mini; i++) {
dst[len - i - 1] = src[i];
}
if (areAligned2((uintptr_t) (src), (uintptr_t) (dst + len - SSE_LEN_INT32), SSE_LEN_BYTES)) {
for (int i = 2 * SSE_LEN_INT32; i < stop_len; i += 2 * SSE_LEN_INT32) {
v4si src_tmp = _mm_load_si128((__m128i *) ((const int32_t *) src + i)); // load a,b,c,d
v4si src_tmp2 = _mm_load_si128((__m128i *) ((const int32_t *) src + i + SSE_LEN_INT32));
v4si src_tmp_slip = _mm_shuffle_epi32(src_tmp, IMM8_FLIP_VEC); // rotate vec from abcd to bcba
v4si src_tmp_slip2 = _mm_shuffle_epi32(src_tmp2, IMM8_FLIP_VEC);
_mm_store_si128((__m128i *) (dst + len - i - SSE_LEN_INT32), src_tmp_slip); // store the flipped vector
_mm_store_si128((__m128i *) (dst + len - i - 2 * SSE_LEN_INT32), src_tmp_slip2);
}
} else {
for (int i = 2 * SSE_LEN_INT32; i < stop_len; i += 2 * SSE_LEN_INT32) {
v4si src_tmp = _mm_loadu_si128((__m128i *) (src + i)); // load a,b,c,d
v4si src_tmp2 = _mm_loadu_si128((__m128i *) (src + i + SSE_LEN_INT32));
v4si src_tmp_slip = _mm_shuffle_epi32(src_tmp, IMM8_FLIP_VEC); // rotate vec from abcd to bcba
v4si src_tmp_slip2 = _mm_shuffle_epi32(src_tmp2, IMM8_FLIP_VEC);
_mm_storeu_si128((__m128i *) (dst + len - i - SSE_LEN_INT32), src_tmp_slip); // store the flipped vector
_mm_storeu_si128((__m128i *) (dst + len - i - 2 * SSE_LEN_INT32), src_tmp_slip2);
}
}
for (int i = stop_len; i < len; i++) {
dst[len - i - 1] = src[i];
}
}
static inline void maxevery128s(int32_t *src1, int32_t *src2, int32_t *dst, int len)
{
int stop_len = len / (2 * SSE_LEN_INT32);
stop_len *= (2 * SSE_LEN_INT32);
if (areAligned3((uintptr_t) (src1), (uintptr_t) (src2), (uintptr_t) (dst), SSE_LEN_BYTES)) {
for (int i = 0; i < stop_len; i += 2 * SSE_LEN_INT32) {
v4si src1_tmp = _mm_load_si128((__m128i *) ((const int32_t *) src1 + i));
v4si src2_tmp = _mm_load_si128((__m128i *) ((const int32_t *) src2 + i));
v4si src1_tmp2 = _mm_load_si128((__m128i *) ((const int32_t *) src1 + i + SSE_LEN_INT32));
v4si src2_tmp2 = _mm_load_si128((__m128i *) ((const int32_t *) src2 + i + SSE_LEN_INT32));
v4si max1 = _mm_max_epi32(src1_tmp, src2_tmp);
v4si max2 = _mm_max_epi32(src1_tmp2, src2_tmp2);
_mm_store_si128((__m128i *) (dst + i), max1);
_mm_store_si128((__m128i *) (dst + i + SSE_LEN_INT32), max2);
}
} else {
for (int i = 0; i < stop_len; i += 2 * SSE_LEN_INT32) {
v4si src1_tmp = _mm_loadu_si128((__m128i *) (src1 + i));
v4si src2_tmp = _mm_loadu_si128((__m128i *) (src2 + i));
v4si src1_tmp2 = _mm_loadu_si128((__m128i *) (src1 + i + SSE_LEN_INT32));
v4si src2_tmp2 = _mm_loadu_si128((__m128i *) (src2 + i + SSE_LEN_INT32));
v4si max1 = _mm_max_epi32(src1_tmp, src2_tmp);
v4si max2 = _mm_max_epi32(src1_tmp2, src2_tmp2);
_mm_storeu_si128((__m128i *) (dst + i), max1);
_mm_storeu_si128((__m128i *) (dst + i + SSE_LEN_INT32), max2);
}
}
for (int i = stop_len; i < len; i++) {
dst[i] = src1[i] > src2[i] ? src1[i] : src2[i];
}
}
static inline void minevery128s(int32_t *src1, int32_t *src2, int32_t *dst, int len)
{
int stop_len = len / (2 * SSE_LEN_INT32);
stop_len *= (2 * SSE_LEN_INT32);
if (areAligned3((uintptr_t) (src1), (uintptr_t) (src2), (uintptr_t) (dst), SSE_LEN_BYTES)) {
for (int i = 0; i < stop_len; i += 2 * SSE_LEN_INT32) {
v4si src1_tmp = _mm_load_si128((__m128i *) ((const int32_t *) src1 + i));
v4si src2_tmp = _mm_load_si128((__m128i *) ((const int32_t *) src2 + i));
v4si src1_tmp2 = _mm_load_si128((__m128i *) ((const int32_t *) src1 + i + SSE_LEN_INT32));
v4si src2_tmp2 = _mm_load_si128((__m128i *) ((const int32_t *) src2 + i + SSE_LEN_INT32));
v4si min1 = _mm_min_epi32(src1_tmp, src2_tmp);
v4si min2 = _mm_min_epi32(src1_tmp2, src2_tmp2);
_mm_store_si128((__m128i *) (dst + i), min1);
_mm_store_si128((__m128i *) (dst + i + SSE_LEN_INT32), min2);
}
} else {
for (int i = 0; i < stop_len; i += 2 * SSE_LEN_INT32) {
v4si src1_tmp = _mm_loadu_si128((__m128i *) (src1 + i));
v4si src2_tmp = _mm_loadu_si128((__m128i *) (src2 + i));
v4si src1_tmp2 = _mm_loadu_si128((__m128i *) (src1 + i + SSE_LEN_INT32));
v4si src2_tmp2 = _mm_loadu_si128((__m128i *) (src2 + i + SSE_LEN_INT32));
v4si min1 = _mm_min_epi32(src1_tmp, src2_tmp);
v4si min2 = _mm_min_epi32(src1_tmp2, src2_tmp2);
_mm_storeu_si128((__m128i *) (dst + i), min1);
_mm_storeu_si128((__m128i *) (dst + i + SSE_LEN_INT32), min2);
}
}
for (int i = stop_len; i < len; i++) {
dst[i] = src1[i] < src2[i] ? src1[i] : src2[i];
}
}
static inline void minmax128s(int32_t *src, int len, int32_t *min_value, int32_t *max_value)
{
int stop_len = (len - SSE_LEN_INT32) / (2 * SSE_LEN_INT32);
stop_len *= (2 * SSE_LEN_INT32);
stop_len = (stop_len < 0) ? 0 : stop_len;
int32_t min_s[SSE_LEN_INT32] __attribute__((aligned(SSE_LEN_BYTES)));
int32_t max_s[SSE_LEN_INT32] __attribute__((aligned(SSE_LEN_BYTES)));
v4si max_v, min_v, max_v2, min_v2;
v4si src_tmp, src_tmp2;
int32_t min_tmp = src[0];
int32_t max_tmp = src[0];
if (len >= SSE_LEN_INT32) {
if (isAligned((uintptr_t) (src), SSE_LEN_BYTES)) {
src_tmp = _mm_load_si128((__m128i *) ((const int32_t *) src + 0));
max_v = src_tmp;
min_v = src_tmp;
max_v2 = src_tmp;
min_v2 = src_tmp;
for (int i = SSE_LEN_INT32; i < stop_len; i += 2 * SSE_LEN_INT32) {
src_tmp = _mm_load_si128((__m128i *) ((const int32_t *) src + i));
src_tmp2 = _mm_load_si128((__m128i *) ((const int32_t *) src + i + SSE_LEN_INT32));
max_v = _mm_max_epi32(max_v, src_tmp);
min_v = _mm_min_epi32(min_v, src_tmp);
max_v2 = _mm_max_epi32(max_v2, src_tmp2);
min_v2 = _mm_min_epi32(min_v2, src_tmp2);
}
} else {
src_tmp = _mm_loadu_si128((__m128i *) (src + 0));
max_v = src_tmp;
min_v = src_tmp;
max_v2 = src_tmp;
min_v2 = src_tmp;
for (int i = SSE_LEN_INT32; i < stop_len; i += 2 * SSE_LEN_INT32) {
src_tmp = _mm_loadu_si128((__m128i *) ((const int32_t *) src + i));
src_tmp2 = _mm_loadu_si128((__m128i *) ((const int32_t *) src + i + SSE_LEN_INT32));
max_v = _mm_max_epi32(max_v, src_tmp);
min_v = _mm_min_epi32(min_v, src_tmp);
max_v2 = _mm_max_epi32(max_v2, src_tmp2);
min_v2 = _mm_min_epi32(min_v2, src_tmp2);
}
}
max_v = _mm_max_epi32(max_v, max_v2);
min_v = _mm_min_epi32(min_v, min_v2);
_mm_store_si128((__m128i *) (max_s), max_v);
_mm_store_si128((__m128i *) (min_s), min_v);
max_tmp = max_s[0];
max_tmp = max_tmp > max_s[1] ? max_tmp : max_s[1];
max_tmp = max_tmp > max_s[2] ? max_tmp : max_s[2];
max_tmp = max_tmp > max_s[3] ? max_tmp : max_s[3];
min_tmp = min_s[0];
min_tmp = min_tmp < min_s[1] ? min_tmp : min_s[1];
min_tmp = min_tmp < min_s[2] ? min_tmp : min_s[2];
min_tmp = min_tmp < min_s[3] ? min_tmp : min_s[3];
}
for (int i = stop_len; i < len; i++) {
max_tmp = max_tmp > src[i] ? max_tmp : src[i];
min_tmp = min_tmp < src[i] ? min_tmp : src[i];
}
*max_value = max_tmp;
*min_value = min_tmp;
}
static inline void threshold128_gt_s(int32_t *src, int32_t *dst, int len, int32_t value)
{
const v4si tmp = _mm_set1_epi32(value);
int stop_len = len / (2 * SSE_LEN_INT32);
stop_len *= (2 * SSE_LEN_INT32);
if (areAligned2((uintptr_t) (src), (uintptr_t) (dst), SSE_LEN_BYTES)) {
for (int i = 0; i < stop_len; i += 2 * SSE_LEN_INT32) {
v4si src_tmp = _mm_load_si128((__m128i *) (src + i));
v4si src_tmp2 = _mm_load_si128((__m128i *) (src + i + SSE_LEN_INT32));
v4si dst_tmp = _mm_min_epi32(src_tmp, tmp);
v4si dst_tmp2 = _mm_min_epi32(src_tmp2, tmp);
_mm_store_si128((__m128i *) (dst + i), dst_tmp);
_mm_store_si128((__m128i *) (dst + i + SSE_LEN_INT32), dst_tmp2);
}
} else {
for (int i = 0; i < stop_len; i += 2 * SSE_LEN_INT32) {
v4si src_tmp = _mm_loadu_si128((__m128i *) (src + i));
v4si src_tmp2 = _mm_loadu_si128((__m128i *) (src + i + SSE_LEN_INT32));
v4si dst_tmp = _mm_min_epi32(src_tmp, tmp);
v4si dst_tmp2 = _mm_min_epi32(src_tmp2, tmp);
_mm_storeu_si128((__m128i *) (dst + i), dst_tmp);
_mm_storeu_si128((__m128i *) (dst + i + SSE_LEN_INT32), dst_tmp2);
}
}
for (int i = stop_len; i < len; i++) {
dst[i] = src[i] < value ? src[i] : value;
}
}
static inline void threshold128_gtabs_s(int32_t *src, int32_t *dst, int len, int32_t value)
{
const v4si pval = _mm_set1_epi32(value);
const v4si mval = _mm_set1_epi32(-value);
int stop_len = len / (2 * SSE_LEN_INT32);
stop_len *= (2 * SSE_LEN_INT32);
if (areAligned2((uintptr_t) (src), (uintptr_t) (dst), SSE_LEN_BYTES)) {
for (int i = 0; i < stop_len; i += 2 * SSE_LEN_INT32) {
v4si src_tmp = _mm_load_si128((__m128i *) (src + i));
v4si src_tmp2 = _mm_load_si128((__m128i *) (src + i + SSE_LEN_INT32));
v4si src_abs = _mm_abs_epi32(src_tmp);
v4si src_abs2 = _mm_abs_epi32(src_tmp2);
v4si eqmask = _mm_cmpeq_epi32(src_abs, src_tmp); // if A = abs(A), then A is >= 0 (mask 0xFFFFFFFF)
v4si eqmask2 = _mm_cmpeq_epi32(src_abs2, src_tmp2);
v4si min = _mm_min_epi32(src_tmp, pval);
v4si min2 = _mm_min_epi32(src_tmp2, pval);
v4si max = _mm_max_epi32(src_tmp, mval);
v4si max2 = _mm_max_epi32(src_tmp2, mval);
v4si dst_tmp = _mm_blendv_epi8(max, min, eqmask);
v4si dst_tmp2 = _mm_blendv_epi8(max2, min2, eqmask2);
_mm_store_si128((__m128i *) (dst + i), dst_tmp);
_mm_store_si128((__m128i *) (dst + i + SSE_LEN_INT32), dst_tmp2);
}
} else {
for (int i = 0; i < stop_len; i += 2 * SSE_LEN_INT32) {
v4si src_tmp = _mm_loadu_si128((__m128i *) (src + i));
v4si src_tmp2 = _mm_loadu_si128((__m128i *) (src + i + SSE_LEN_INT32));
v4si src_abs = _mm_abs_epi32(src_tmp);
v4si src_abs2 = _mm_abs_epi32(src_tmp2);
v4si eqmask = _mm_cmpeq_epi32(src_abs, src_tmp); // if A = abs(A), then A is >= 0 (mask 0xFFFFFFFF)
v4si eqmask2 = _mm_cmpeq_epi32(src_abs2, src_tmp2);
v4si min = _mm_min_epi32(src_tmp, pval);
v4si min2 = _mm_min_epi32(src_tmp2, pval);
v4si max = _mm_max_epi32(src_tmp, mval);
v4si max2 = _mm_max_epi32(src_tmp2, mval);
v4si dst_tmp = _mm_blendv_epi8(max, min, eqmask);
v4si dst_tmp2 = _mm_blendv_epi8(max2, min2, eqmask2);
_mm_storeu_si128((__m128i *) (dst + i), dst_tmp);
_mm_storeu_si128((__m128i *) (dst + i + SSE_LEN_INT32), dst_tmp2);
}
}
for (int i = stop_len; i < len; i++) {
if (src[i] >= 0) {
dst[i] = src[i] > value ? value : src[i];
} else {
dst[i] = src[i] < (-value) ? (-value) : src[i];
}
}
}
static inline void threshold128_lt_s(int32_t *src, int32_t *dst, int len, int32_t value)
{
const v4si tmp = _mm_set1_epi32(value);
int stop_len = len / (2 * SSE_LEN_INT32);
stop_len *= (2 * SSE_LEN_INT32);
if (areAligned2((uintptr_t) (src), (uintptr_t) (dst), SSE_LEN_BYTES)) {
for (int i = 0; i < stop_len; i += 2 * SSE_LEN_INT32) {
v4si src_tmp = _mm_load_si128((__m128i *) (src + i));
v4si src_tmp2 = _mm_load_si128((__m128i *) (src + i + SSE_LEN_INT32));
v4si dst_tmp = _mm_max_epi32(src_tmp, tmp);
v4si dst_tmp2 = _mm_max_epi32(src_tmp2, tmp);
_mm_store_si128((__m128i *) (dst + i), dst_tmp);
_mm_store_si128((__m128i *) (dst + i + SSE_LEN_INT32), dst_tmp2);
}
} else {
for (int i = 0; i < stop_len; i += 2 * SSE_LEN_INT32) {
v4si src_tmp = _mm_loadu_si128((__m128i *) (src + i));
v4si src_tmp2 = _mm_loadu_si128((__m128i *) (src + i + SSE_LEN_INT32));
v4si dst_tmp = _mm_max_epi32(src_tmp, tmp);
v4si dst_tmp2 = _mm_max_epi32(src_tmp2, tmp);
_mm_storeu_si128((__m128i *) (dst + i), dst_tmp);
_mm_storeu_si128((__m128i *) (dst + i + SSE_LEN_INT32), dst_tmp2);
}
}
for (int i = stop_len; i < len; i++) {
dst[i] = src[i] > value ? src[i] : value;
}
}
static inline void threshold128_ltabs_s(int32_t *src, int32_t *dst, int len, int32_t value)
{
const v4si pval = _mm_set1_epi32(value);
const v4si mval = _mm_set1_epi32(-value);
int stop_len = len / (2 * SSE_LEN_INT32);
stop_len *= (2 * SSE_LEN_INT32);
if (areAligned2((uintptr_t) (src), (uintptr_t) (dst), SSE_LEN_BYTES)) {
for (int i = 0; i < stop_len; i += 2 * SSE_LEN_INT32) {
v4si src_tmp = _mm_load_si128((__m128i *) (src + i));
v4si src_tmp2 = _mm_load_si128((__m128i *) (src + i + SSE_LEN_INT32));
v4si src_abs = _mm_abs_epi32(src_tmp);
v4si src_abs2 = _mm_abs_epi32(src_tmp2);
v4si eqmask = _mm_cmpeq_epi32(src_abs, src_tmp); // if A = abs(A), then A is >= 0 (mask 0xFFFFFFFF)
v4si eqmask2 = _mm_cmpeq_epi32(src_abs2, src_tmp2);
v4si max = _mm_max_epi32(src_tmp, pval);
v4si max2 = _mm_max_epi32(src_tmp2, pval);
v4si min = _mm_min_epi32(src_tmp, mval);
v4si min2 = _mm_min_epi32(src_tmp2, mval);
v4si dst_tmp = _mm_blendv_epi8(min, max, eqmask);
v4si dst_tmp2 = _mm_blendv_epi8(min2, max2, eqmask2);
_mm_store_si128((__m128i *) (dst + i), dst_tmp);
_mm_store_si128((__m128i *) (dst + i + SSE_LEN_INT32), dst_tmp2);
}
} else {
for (int i = 0; i < stop_len; i += 2 * SSE_LEN_INT32) {
v4si src_tmp = _mm_loadu_si128((__m128i *) (src + i));
v4si src_tmp2 = _mm_loadu_si128((__m128i *) (src + i + SSE_LEN_INT32));
v4si src_abs = _mm_abs_epi32(src_tmp);
v4si src_abs2 = _mm_abs_epi32(src_tmp2);
v4si eqmask = _mm_cmpeq_epi32(src_abs, src_tmp); // if A = abs(A), then A is >= 0 (mask 0xFFFFFFFF)
v4si eqmask2 = _mm_cmpeq_epi32(src_abs2, src_tmp2);
v4si max = _mm_max_epi32(src_tmp, pval);
v4si max2 = _mm_max_epi32(src_tmp2, pval);
v4si min = _mm_min_epi32(src_tmp, mval);
v4si min2 = _mm_min_epi32(src_tmp2, mval);
v4si dst_tmp = _mm_blendv_epi8(min, max, eqmask);
v4si dst_tmp2 = _mm_blendv_epi8(min2, max2, eqmask2);
_mm_storeu_si128((__m128i *) (dst + i), dst_tmp);
_mm_storeu_si128((__m128i *) (dst + i + SSE_LEN_INT32), dst_tmp2);
}
}
for (int i = stop_len; i < len; i++) {
if (src[i] >= 0) {
dst[i] = src[i] < value ? value : src[i];
} else {
dst[i] = src[i] > (-value) ? (-value) : src[i];
}
}
}
static inline void threshold128_ltval_gtval_s(int32_t *src, int32_t *dst, int len, int32_t ltlevel, int32_t ltvalue, int32_t gtlevel, int32_t gtvalue)
{
const v4si ltlevel_v = _mm_set1_epi32(ltlevel);
const v4si ltvalue_v = _mm_set1_epi32(ltvalue);
const v4si gtlevel_v = _mm_set1_epi32(gtlevel);
const v4si gtvalue_v = _mm_set1_epi32(gtvalue);
int stop_len = len / (2 * SSE_LEN_FLOAT);
stop_len *= (2 * SSE_LEN_FLOAT);
if (areAligned2((uintptr_t) (src), (uintptr_t) (dst), SSE_LEN_BYTES)) {
for (int i = 0; i < stop_len; i += 2 * SSE_LEN_FLOAT) {
v4si src_tmp = _mm_load_si128((__m128i *) (src + i));
v4si src_tmp2 = _mm_load_si128((__m128i *) (src + i + SSE_LEN_FLOAT));
v4si lt_mask = _mm_cmplt_epi32(src_tmp, ltlevel_v);
v4si gt_mask = _mm_cmpgt_epi32(src_tmp, gtlevel_v);
v4si dst_tmp = _mm_blendv_epi8(src_tmp, ltvalue_v, lt_mask);
dst_tmp = _mm_blendv_epi8(dst_tmp, gtvalue_v, gt_mask);
_mm_store_si128((__m128i *) (dst + i), dst_tmp);
v4si lt_mask2 = _mm_cmplt_epi32(src_tmp2, ltlevel_v);
v4si gt_mask2 = _mm_cmpgt_epi32(src_tmp2, gtlevel_v);
v4si dst_tmp2 = _mm_blendv_epi8(src_tmp2, ltvalue_v, lt_mask2);
dst_tmp2 = _mm_blendv_epi8(dst_tmp2, gtvalue_v, gt_mask2);
_mm_store_si128((__m128i *) (dst + i + SSE_LEN_FLOAT), dst_tmp2);
}
} else {
for (int i = 0; i < stop_len; i += 2 * SSE_LEN_FLOAT) {
v4si src_tmp = _mm_loadu_si128((__m128i *) (src + i));
v4si src_tmp2 = _mm_loadu_si128((__m128i *) (src + i + SSE_LEN_FLOAT));
v4si lt_mask = _mm_cmplt_epi32(src_tmp, ltlevel_v);
v4si gt_mask = _mm_cmpgt_epi32(src_tmp, gtlevel_v);
v4si dst_tmp = _mm_blendv_epi8(src_tmp, ltvalue_v, lt_mask);
dst_tmp = _mm_blendv_epi8(dst_tmp, gtvalue_v, gt_mask);
_mm_storeu_si128((__m128i *) (dst + i), dst_tmp);
v4si lt_mask2 = _mm_cmplt_epi32(src_tmp2, ltlevel_v);
v4si gt_mask2 = _mm_cmpgt_epi32(src_tmp2, gtlevel_v);
v4si dst_tmp2 = _mm_blendv_epi8(src_tmp2, ltvalue_v, lt_mask2);
dst_tmp2 = _mm_blendv_epi8(dst_tmp2, gtvalue_v, gt_mask2);
_mm_storeu_si128((__m128i *) (dst + i + SSE_LEN_FLOAT), dst_tmp2);
}
}
for (int i = stop_len; i < len; i++) {
dst[i] = src[i] < ltlevel ? ltvalue : src[i];
dst[i] = src[i] > gtlevel ? gtvalue : dst[i];
}
}