-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBEFD_2019_Part_1_17Sett2018_KF.tex
2446 lines (1956 loc) · 105 KB
/
BEFD_2019_Part_1_17Sett2018_KF.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% KOMA-Script Presentation
% LaTeX Template
% Version 1.1 (18/10/15)
%
% This template has been downloaded from:
% http://www.LaTeXTemplates.com
%
% Original Authors:
% Marius Hofert ([email protected])
% Markus Kohm ([email protected])
% Described in the PracTeX Journal, 2010, No. 2
%
% License:
% CC BY-NC-SA 3.0 (http://creativecommons.org/licenses/by-nc-sa/3.0/)
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%----------------------------------------------------------------------------------------
% PACKAGES AND OTHER DOCUMENT CONFIGURATIONS
%----------------------------------------------------------------------------------------
\documentclass[
paper=128mm:96mm, % The same paper size as used in the beamer class
fontsize=9.5pt, % Font size
pagesize, % Write page size to dvi or pdf
parskip=half-, % Paragraphs separated by half a line
]{scrartcl} % KOMA script (article)
\linespread{1.12} % Increase line spacing for readability
%------------------------------------------------
% Colors
\usepackage{xcolor} % Required for custom colors
\usepackage{amsthm} % Required for theorem environments
\usepackage{bm} % Required for bold math symbols (used in the footer of the slides)
\usepackage{graphicx} % Required for including images in figures
\usepackage{tikz} % Required for colored boxes
\usepackage{booktabs} % Required for horizontal rules in tables
\usepackage{multicol} % Required for creating multiple columns in slides
\usepackage{lastpage} % For printing the total number of pages at the bottom of each slide
\usepackage[english]{babel} % Document language - required for customizing section titles
\usepackage{microtype} % Better typography
\usepackage{tocstyle} % Required for customizing the table of contents
\usepackage[utf8]{inputenc}
\usepackage{amsmath, amssymb, multicol, amsfonts, amsthm, amscd, epsfig, enumerate}
\usepackage{bm}
\usepackage{bbm}
\usepackage{caption}
%\usepackage{fancyhdr}
\usepackage{fancyvrb}
\usepackage{graphicx}
\usepackage{listings}
\usepackage{color}
\usepackage{xcolor}
%\usepackage{url}
% Define a few colors for making text stand out within the presentation
\definecolor{mygreen}{RGB}{44,85,17}
\definecolor{myblue}{RGB}{34,31,217}
\definecolor{mybrown}{RGB}{194,164,113}
\definecolor{myred}{RGB}{255,66,56}
% Use these colors within the presentation by enclosing text in the commands below
\newcommand*{\mygreen}[1]{\textcolor{mygreen}{#1}}
\newcommand*{\myblue}[1]{\textcolor{myblue}{#1}}
\newcommand*{\mybrown}[1]{\textcolor{mybrown}{#1}}
\newcommand*{\myred}[1]{\textcolor{myred}{#1}}
%------------------------------------------------
%------------------------------------------------
% Margins
\usepackage[ % Page margins settings
includeheadfoot,
top=3.5mm,
bottom=3.5mm,
left=5.5mm,
right=5.5mm,
headsep=6.5mm,
footskip=8.5mm
]{geometry}
%------------------------------------------------
%------------------------------------------------
% Fonts
\usepackage[T1]{fontenc} % For correct hyphenation and T1 encoding
\usepackage{lmodern} % Default font: latin modern font
%\usepackage{fourier} % Alternative font: utopia
%\usepackage{charter} % Alternative font: low-resolution roman font
\renewcommand{\familydefault}{\sfdefault} % Sans serif - this may need to be commented to see the alternative fonts
%------------------------------------------------
%------------------------------------------------
% Various required packages
% :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
% COLORS
% :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
\definecolor{darkross}{rgb}{0.008,0.412,0.471}
\definecolor{middleross}{rgb}{0.012,0.580,0.663}
\definecolor{lightross}{rgb}{0.016,0.749,0.855}
\definecolor{darkblue}{rgb}{0.067,0.008,0.471}
\definecolor{middleblue}{rgb}{0.094,0.012,0.663}
\definecolor{lightblue}{rgb}{0.122,0.016,0.855}
\definecolor{darkpurple}{rgb}{0.471,0.008,0.412}
\definecolor{middlepurple}{rgb}{0.663,0.012,0.580}
\definecolor{lightpurple}{rgb}{0.855,0.016,0.749}
\definecolor{darkbrown}{rgb}{0.471,0.067,0.008}
\definecolor{middlebrown}{rgb}{0.663,0.094,0.012}
\definecolor{lightbrown}{rgb}{0.855,0.122,0.016}
\definecolor{darkolive}{rgb}{0.412,0.471,0.008}
\definecolor{middleolive}{rgb}{0.580,0.663,0.012}
\definecolor{lightolive}{rgb}{0.749,0.855,0.016}
\definecolor{darkgreen}{rgb}{0.008,0.417,0.067}
\definecolor{middlegreen}{rgb}{0.012,0.663,0.094}
\definecolor{lightgreen}{rgb}{0.016,0.855,0.122}
\definecolor{darkocre}{rgb}{0.471,0.298,0.008}
\definecolor{middleocre}{rgb}{0.663,0.420,0.012}
\definecolor{lightocre}{rgb}{0.855,0.541,0.016}
%%%
\def\colorred{\color{red}}
\def\colorblue{\color{middleblue}}
\def\colorgreen{\color{green}}
\def\colordarkolive{\color{darkolive}}
\def\coloryellow{\color{yellow}}
\def\colordarkross{\color{darkross}}
\def\colordarkblue{\color{darkblue}}
\def\colorlightblue{\color{lightblue}}
\def\colorlightbrown{\color{lightbrown}}
\def\colordarkgreen{\color{darkgreen}}
% :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
% DEFINITIONS
% :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
\def\qmo{``}
\def\qmc{''}
\def\qmcsp{'' }
\newcommand\bbone{\ensuremath{\mathbbm{1}}}
\providecommand{\keywords}[1]{\textbf{Keywords:} #1}
\newcommand{\indep}{\rotatebox[origin=c]{90}{$\models$}}
\providecommand*{\eu}{\ensuremath{\mathrm{e}}}
\providecommand*{\pastinfo}{\ensuremath{\mathfrak{F}_{t-1}}}
\providecommand*{\infoset}{\ensuremath{\mathfrak{F}}}
\newcommand{\reali}{{\rm I}\negthinspace {\rm R}}
\def\i{{\dot\imath}}
\def\E{{\mathbb{E}}}
\newcommand{\sgn}{\text{sgn}}
\DeclareMathOperator{\plim}{plim}
%\newcommand{\indep}{\rotatebox[origin=c]{90}{$\models$}}
\definecolor{light-gray}{gray}{0.98}
\lstset{
language=R,
commentstyle=\ttfamily\itshape,
keywordstyle=\bfseries,
basicstyle=\footnotesize\ttfamily,
stringstyle=\rmfamily,
backgroundcolor=\color{light-gray},
showspaces=false,
showstringspaces=false,
showtabs=false,
rulecolor=\color{black},
tabsize=2,
captionpos=b,
breaklines=true,
breakatwhitespace=false,
title=\lstname,
keywordstyle=\color{middleblue},
commentstyle=\color{darkbrown},
stringstyle=\color{darkgreen},
escapeinside={(*}{*)},
fancyvrb=true,
alsoother={$},
otherkeywords={=,!=, ~, $, *, \&, \%/\%, \%*\%, \%\%, <-, <<-,main,head,as.Date,header,plot,tail,timeSequence,basicStats,acf},
deletekeywords={c,R,beta,Call,levels,trace,cut,off,t,D}}
%%%%%%%% PER FAR APPARIRE I SIMBOLI NELLA BIBLIOGRAFIA %%%%%%%%%%
%\setbeamertemplate{bibliography item}{%
% \ifboolexpr{ test {\ifentrytype{book}} or test {\ifentrytype{mvbook}}
% or test {\ifentrytype{collection}} or test {\ifentrytype{mvcollection}}
% or test {\ifentrytype{reference}} or test {\ifentrytype{mvreference}} }
% {\setbeamertemplate{bibliography item}[book]}
% {\ifentrytype{online}
% {\setbeamertemplate{bibliography item}[online]}
% {\setbeamertemplate{bibliography item}[article]}}%
% \usebeamertemplate{bibliography item}}
%
%\defbibenvironment{bibliography}
%{\list{}
% {\settowidth{\labelwidth}{\usebeamertemplate{bibliography item}}%
% \setlength{\leftmargin}{\labelwidth}%
% \setlength{\labelsep}{\biblabelsep}%
% \addtolength{\leftmargin}{\labelsep}%
% \setlength{\itemsep}{\bibitemsep}%
% \setlength{\parsep}{\bibparsep}}}
%{\endlist}
%{\item}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
% INPUT DEFINITIONS
% :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
\input{MyDef/def_greek.tex}
\input{MyDef/def_letter.tex}
\input{MyDef/def_letters_s.tex}
\input{MyDef/def_other.tex}
\input{MyDef/def_letters_acc.tex}
\input{MyDef/def_virg.tex}
%------------------------------------------------
%------------------------------------------------
% Slide layout configuration
\usepackage{scrpage2} % Required for customization of the header and footer
\pagestyle{scrheadings} % Activates the pagestyle from scrpage2 for custom headers and footers
\clearscrheadfoot % Remove the default header and footer
\setkomafont{pageheadfoot}{\normalfont\color{black}\sffamily} % Font settings for the header and footer
% Sets vertical centering of slide contents with increased space between paragraphs/lists
\makeatletter
\renewcommand*{\@textbottom}{\vskip \z@ \@plus 1fil}
\newcommand*{\@texttop}{\vskip \z@ \@plus .5fil}
\addtolength{\parskip}{\z@\@plus .25fil}
\makeatother
% Remove page numbers and the dots leading to them from the outline slide
\makeatletter
\newtocstyle[noonewithdot]{nodotnopagenumber}{\settocfeature{pagenumberbox}{\@gobble}}
\makeatother
\usetocstyle{nodotnopagenumber}
\AtBeginDocument{\renewcaptionname{english}{\contentsname}{\Large Overview}} % Change the name of the table of contents
%------------------------------------------------
%------------------------------------------------
% Header configuration - if you don't want a header remove this block
\ihead{
\hspace{-2mm}
\begin{tikzpicture}[remember picture,overlay]
\node [xshift=\paperwidth/2,yshift=-\headheight] (mybar) at (current page.north west)[rectangle,fill,inner sep=0pt,minimum width=\paperwidth,minimum height=2\headheight,top color=mygreen!64,bottom color=mygreen]{}; % Colored bar
\node[below of=mybar,yshift=3.3mm,rectangle,shade,inner sep=0pt,minimum width=128mm,minimum height =1.5mm,top color=black!50,bottom color=white]{}; % Shadow under the colored bar
shadow
\end{tikzpicture}
\color{white}\runninghead} % Header text defined by the \runninghead command below and colored white for contrast
%------------------------------------------------
%------------------------------------------------
% Footer configuration
\setlength{\footheight}{8mm} % Height of the footer
\addtokomafont{pagefoot}{\footnotesize} % Small font size for the footnote
\ifoot{% Left side
\hspace{-2mm}
\begin{tikzpicture}[remember picture,overlay]
\node [xshift=\paperwidth/2,yshift=\footheight] at (current page.south west)[rectangle,fill,inner sep=0pt,minimum width=\paperwidth,minimum height=3pt,top color=mygreen,bottom color=mygreen]{}; % Green bar
\end{tikzpicture}
\myauthorbar\ \raisebox{0.2mm}{$\bm{\vert}$}\ \myuni % Left side text
}
\ofoot[\pagemark/\pageref{LastPage}\hspace{-2mm}]{\pagemark/\pageref{LastPage}\hspace{-2mm}} % Right side
%------------------------------------------------
%------------------------------------------------
% Section spacing - deeper section titles are given less space due to lesser importance
\usepackage{titlesec} % Required for customizing section spacing
\titlespacing{\section}{0mm}{0mm}{0mm} % Lengths are: left, before, after
\titlespacing{\subsection}{0mm}{0mm}{-1mm} % Lengths are: left, before, after
\titlespacing{\subsubsection}{0mm}{0mm}{-2mm} % Lengths are: left, before, after
\setcounter{secnumdepth}{0} % How deep sections are numbered, set to no numbering by default - change to 1 for numbering sections, 2 for numbering sections and subsections, etc
%------------------------------------------------
%------------------------------------------------
% Theorem style
\newtheoremstyle{mythmstyle} % Defines a new theorem style used in this template
{0.5em} % Space above
{0.5em} % Space below
{} % Body font
{} % Indent amount
{\sffamily\bfseries} % Head font
{} % Punctuation after head
{\newline} % Space after head
{\thmname{#1}\ \thmnote{(#3)}} % Head spec
\theoremstyle{mythmstyle} % Change the default style of the theorem to the one defined above
\newtheorem{theorem}{Theorem}[section] % Label for theorems
\newtheorem{remark}[theorem]{Remark} % Label for remarks
\newtheorem{algorithm}[theorem]{Algorithm} % Label for algorithms
\newtheorem{definition}[theorem]{Definition} % Label for algorithms
\newtheorem{example}[theorem]{Example} % Label for algorithms
\makeatletter % Correct qed adjustment
%------------------------------------------------
%------------------------------------------------
% The code for the box which can be used to highlight an element of a slide (such as a theorem)
\newcommand*{\mybox}[2]{ % The box takes two arguments: width and content
\par\noindent
\begin{tikzpicture}[mynodestyle/.style={rectangle,draw=mygreen,thick,inner sep=2mm,text justified,top color=white,bottom color=white,above}]\node[mynodestyle,at={(0.5*#1+2mm+0.4pt,0)}]{ % Box formatting
\begin{minipage}[t]{#1}
#2
\end{minipage}
};
\end{tikzpicture}
\par\vspace{-1.3em}}
%------------------------------------------------
%----------------------------------------------------------------------------------------
% PRESENTATION INFORMATION
%----------------------------------------------------------------------------------------
\newcommand*{\mytitle}{Business, Economic and Financial Data} % Title
\newcommand*{\runninghead}{Business, Economic and Financial Data} % Running head displayed on almost all slides
\newcommand*{\myauthor}{Bernardi Mauro\\ \textcolor{green}{Part I. Introduction to Time Series Analysis}} % Presenters name(s)
\newcommand*{\myauthorbar}{Part I. Introduction to Time Series Analysis}
\newcommand*{\mydate}{A.Y. 2018--2019} % Presentation date
\newcommand*{\myuni}{A.Y. 2018--2019} % University or department
%----------------------------------------------------------------------------------------
% :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
% COLORS
% :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
\definecolor{darkross}{rgb}{0.008,0.412,0.471}
\definecolor{middleross}{rgb}{0.012,0.580,0.663}
\definecolor{lightross}{rgb}{0.016,0.749,0.855}
\definecolor{darkblue}{rgb}{0.067,0.008,0.471}
\definecolor{middleblue}{rgb}{0.094,0.012,0.663}
\definecolor{lightblue}{rgb}{0.122,0.016,0.855}
\definecolor{darkpurple}{rgb}{0.471,0.008,0.412}
\definecolor{middlepurple}{rgb}{0.663,0.012,0.580}
\definecolor{lightpurple}{rgb}{0.855,0.016,0.749}
\definecolor{darkbrown}{rgb}{0.471,0.067,0.008}
\definecolor{middlebrown}{rgb}{0.663,0.094,0.012}
\definecolor{lightbrown}{rgb}{0.855,0.122,0.016}
\definecolor{darkolive}{rgb}{0.412,0.471,0.008}
\definecolor{middleolive}{rgb}{0.580,0.663,0.012}
\definecolor{lightolive}{rgb}{0.749,0.855,0.016}
\definecolor{darkgreen}{rgb}{0.008,0.417,0.067}
\definecolor{middlegreen}{rgb}{0.012,0.663,0.094}
\definecolor{lightgreen}{rgb}{0.016,0.855,0.122}
\definecolor{darkocre}{rgb}{0.471,0.298,0.008}
\definecolor{middleocre}{rgb}{0.663,0.420,0.012}
\definecolor{lightocre}{rgb}{0.855,0.541,0.016}
%%%
\def\colorred{\color{red}}
\def\colorblue{\color{middleblue}}
\def\colorgreen{\color{green}}
\def\colordarkolive{\color{darkolive}}
\def\coloryellow{\color{yellow}}
\def\colordarkross{\color{darkross}}
\def\colordarkblue{\color{darkblue}}
\def\colorlightblue{\color{lightblue}}
\def\colorlightbrown{\color{lightbrown}}
\def\colordarkgreen{\color{darkgreen}}
% :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
% DEFINITIONS
% :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
\def\qmo{``}
\def\qmc{''}
\def\qmcsp{'' }
%\newcommand\bbone{\ensuremath{\mathsfm{1}}}
\providecommand{\keywords}[1]{\textbf{Keywords:} #1}
%\newcommand{\indep}{\rotatebox[origin=c]{90}{$\models$}}
\providecommand*{\eu}{\ensuremath{\mathrm{e}}}
\providecommand*{\pastinfo}{\ensuremath{\mathfrak{F}_{t-1}}}
\providecommand*{\infoset}{\ensuremath{\mathfrak{F}}}
%\newcommand{\reali}{{\rm I}\negthinspace {\rm R}}
\def\i{{\dot\imath}}
\def\E{{\mathsf{E}}}
%\newcommand{\sgn}{\text{sgn}}
%\DeclareMathOperator{\plim}{plim}
%\newcommand{\indep}{\rotatebox[origin=c]{90}{$\models$}}
% :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
% INPUT DEFINITIONS
% :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
\input{MyDef/def_greek.tex}
\input{MyDef/def_letter.tex}
\input{MyDef/def_letters_s.tex}
%\input{MyDef/def_other.tex}
\input{MyDef/def_letters_acc.tex}
\input{MyDef/def_virg.tex}
%\newcommand\bbone{\ensuremath{\mathsfm{1}}}
\begin{document}
%----------------------------------------------------------------------------------------
% TITLE SLIDE
%----------------------------------------------------------------------------------------
% Title slide - you may have to tweak a few of the numbers if you wish to make changes to the layout
\thispagestyle{empty} % No slide header and footer
\begin{tikzpicture}[remember picture,overlay] % Background box
\node [xshift=\paperwidth/2,yshift=\paperheight/2] at (current page.south west)[rectangle,fill,inner sep=0pt,minimum width=\paperwidth,minimum height=\paperheight/2,top color=mygreen,bottom color=myred]{}; % Change the height of the box, its colors and position on the page here
\end{tikzpicture}
% Text within the box
\begin{flushright}
\vspace{0.6cm}
\color{white}\sffamily
{\bfseries\Large\mytitle\par} % Title
\vspace{0.5cm}
\normalsize
\myauthor\par % Author name
\mydate\par % Date
\vfill
\end{flushright}
\clearpage
%----------------------------------------------------------------------------------------
% TABLE OF CONTENTS
%----------------------------------------------------------------------------------------
\thispagestyle{empty} % No slide header and footer
\small\tableofcontents % Change the font size and print the table of contents - it may be useful to shrink the font size further if the presentation is full of sections
% To exclude sections/subsections from the table of contents, put an asterisk after \(sub)section like so: \section*{Section Name}
\clearpage
%----------------------------------------------------------------------------------------
% PRESENTATION SLIDES
%----------------------------------------------------------------------------------------
%
% SLIDE 3 ----------------------------------------------------------
%
\section{Introduction}
The analysis of data observed at different time points leads to unique problems. The obvious dependence introduced by the sampling data over time restricts the applicability of many conventional statistical methods that require random samples.
The analysis of such data is commonly referred to as time series analysis.
In order to provide a statistical setting for describing the character of data that seemingly fluctuate in a random fashion over time, we assume a time series can be defined as a collection of random variables indexed according to the order they are obtained in time.
For example, if we collect data on daily high temperatures, we may consider the time series as a sequence of random variables, $x_1, x_2, x_3,\dots$, where the random variable $x_1$ denotes the high temperature on day one, the variable $x_2$ denotes the value for the second day, $x_3$ denotes the value for the third day, and so on.
\clearpage
In general, a collection of random variables, $\left\{x_t,t=1,2,\dots\right\}$, indexed by $t$ is referred to as a stochastic process. In this text, $t$ will typically be discrete and vary over the integers $t = 0, \pm1, \pm2,\dots$ or some subset of the integers, or a similar index like months of a year.
Historically, time series methods were applied to problems in the physical and environmental sciences. This fact accounts for the basic engineering flavor permeating the language of time series analysis.
\clearpage
\section{Examples of time series data}
The first step in any time series investigation always involves careful scrutiny of the recorded data plotted over time.
The following examples illustrate some of the common kinds of time series data as well as some of the statistical questions that might be asked about such data.
\clearpage
%
%::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
% FIGURE:
%::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
\subsection{Johnson \& Johnson}
\begin{figure}[!h]
\captionsetup{font={footnotesize}}
\begin{center}
%
\includegraphics[width=0.45\textwidth]{Figures/Example_1_Intro_TSA_JJ_1.eps}
%
\caption{\footnotesize{Quarterly earnings per share for the U.S. company Johnson \& Johnson. }}
%
\label{fig:johnsonjohnson}
%
\end{center}
\end{figure}
%::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
%
\clearpage
Figure \ref{fig:johnsonjohnson} shows quarterly earnings per share for the U.S. company Johnson \& Johnson.
There are 84 quarters (21 years) measured from the first quarter of 1960 to the last quarter of 1980.
Modeling such series begins by observing the primary patterns in the time history. In this case, note the increasing underlying trend and variability, and a somewhat regular oscillation superimposed on the trend that seems to repeat over quarters.
To use R package \texttt{astsa}, and then plot the data for this example using R, type the following (try plotting the logged data yourself).
\begin{lstlisting}[belowskip=-0.8 \baselineskip]
install.packages("astsa", dependences=TRUE)
library(astsa)
tsplot(jj, type="o", ylab="Quarterly Earnings per Share")
tsplot(log(jj)) # not shown
\end{lstlisting}
\clearpage
%
%::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
% FIGURE:
%::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
\subsection{S\&P100 Index}
\begin{figure}[!h]
\captionsetup{font={footnotesize}}
\begin{center}
%
\includegraphics[width=0.45\textwidth]{Figures/Example_1_Intro_TSA_SP100_1.eps}
%
\caption{\footnotesize{Prices and daily returns of the Standard and Poor's 100 Index (S\&P100) from 1984 to 2017 }}
%
\label{fig:sp100}
%
\end{center}
\end{figure}
%::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
%
\clearpage
As an example of financial time series data, Figure \ref{fig:sp100} (b) shows the daily returns (or percent change) of the Standard and Poor's 100 Index (S\&P100) from 1984 to 2017. It is easy to spot the financial crisis of 2008 in the figure.
The data shown in Figure \ref{fig:sp100} (b) are typical of return data. The mean of the series appears to be stable with an average return of approximately zero, however, the volatility (or variability) of data exhibits clustering; that is, highly volatile periods tend to be clustered together.
A problem in the analysis of these type of financial data is to forecast the volatility of future returns. Models have been developed to handle these problems.
\clearpage
Examples of financial data sets are provided in \texttt{astsa} but \texttt{xts} must be loaded. For example the Dow Jones Industrial Average Index (DJIA) daily log--returns can be calculated as follows:
\begin{lstlisting}[belowskip=-0.8 \baselineskip]
install.packages("xts", dependences=TRUE)
library(xts)
djiar = diff(log(djia$Close))[-1] # approximate returns
tsplot(djiar, main="DJIA Returns", xlab='', margins=.5)
\end{lstlisting}
\clearpage
%
%::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
% FIGURE:
%::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
\subsection{USD/GBP Foreign exchange rate}
\begin{figure}[!h]
\captionsetup{font={footnotesize}}
\begin{center}
%
\includegraphics[width=0.45\textwidth]{Figures/Example_1_Intro_TSA_FX_1.eps}
%
\caption{\footnotesize{Tasso di cambio USD/GBP (U.S. Dollars to One British Pound) dal 11 gennaio 1981 al 6 febbraio 2017 con frequenza settimanale. }}
%
\label{fig:usukexchrate_1}
%
\end{center}
\end{figure}
%::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
%
\clearpage
%
%::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
% FIGURE:
%::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
\subsection{Crypto currencies}
\begin{figure}[!h]
\captionsetup{font={footnotesize}}
\begin{center}
%
\includegraphics[width=0.45\textwidth]{Figures/Example_1_Intro_TSA_CRYPTO_1.eps}
%
\caption{\footnotesize{Cryptocurrency \qmo BitCoin\qmcsp from April 28, 2013 to November 25, 2017 (daily frequency). }}
%
\label{fig:apple_1}
%
\end{center}
\end{figure}
%::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
%
\clearpage
%
%::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
% FIGURE:
%::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
\subsection{VIX volatility index}
\begin{figure}[!h]
\captionsetup{font={footnotesize}}
\begin{center}
%
\includegraphics[width=0.45\textwidth]{Figures/Example_1_Intro_TSA_VIX_1.eps}
%
\caption{\footnotesize{CBOE Volatility Index: VIX from January 2, 1990 to February, 23 2017 (daily frequency). }}
%
\label{fig:DTB6_1}
%
\end{center}
\end{figure}
%::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
%
\clearpage
%
%::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
% FIGURE:
%::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
\subsection{Italian electricity prices}
\begin{figure}[!h]
\captionsetup{font={footnotesize}}
\begin{center}
%
\includegraphics[width=0.45\textwidth]{Figures/Example_1_Intro_TSA_PUN_1.eps}
%
\caption{\footnotesize{Italian electricity prices (PUN) from April 1, 2004 to December 31, 2016 provided by the \qmo Gestore del Mercato Elettrico\qmcsp (GME). }}
%
\label{fig:GME_3D}
%
\end{center}
\end{figure}
%::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
%
\clearpage
%
%::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
% FIGURE:
%::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
\subsection{Crude oil price in EU}
\begin{figure}[!h]
\captionsetup{font={footnotesize}}
\begin{center}
%
\includegraphics[width=0.45\textwidth]{Figures/Example_1_Intro_TSA_OILEU_1.eps}
%
\caption{\footnotesize{Crude Oil Prices: Brent - Europe, Dollars per Barrel, Daily, Not Seasonally Adjusted.}}
%
\label{fig:GME_Prices_12_1}
%
\end{center}
\end{figure}
%::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
%
\clearpage
%
%::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
% FIGURE:
%::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
\subsection{US real GDP}
\begin{figure}[!h]
\captionsetup{font={footnotesize}}
\begin{center}
%
\includegraphics[width=0.45\textwidth]{Figures/Example_1_Intro_TSA_USRGDP_1.eps}
%
\caption{\footnotesize{Real Gross Domestic Product, Billions of Chained 2009 Dollars, Quarterly, Seasonally Adjusted Annual.}}
%
\label{fig:GME_Prices_12_1}
%
\end{center}
\end{figure}
%::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
%
\clearpage
%
%::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
% FIGURE:
%::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
\subsection{US precipitations}
\begin{figure}[!h]
\captionsetup{font={footnotesize}}
\begin{center}
%
\includegraphics[width=0.45\textwidth]{Figures/Example_1_Intro_TSA_USPRECIP_1.eps}
%
\caption{\footnotesize{US monthly precipitation series from January 1985 to February 2018 (inches), source: \texttt{https://www.ncdc.noaa.gov/}.}}
%
\label{fig:GME_Prices_12_1}
%
\end{center}
\end{figure}
%::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
%
\clearpage
%
%::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
% FIGURE:
%::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
\subsection{Air quality}
\begin{figure}[!h]
\captionsetup{font={footnotesize}}
\begin{center}
%
\includegraphics[width=0.45\textwidth]{Figures/Example_1_Intro_TSA_AirQuality_1.eps}
%
\caption{\footnotesize{AirQualityUCI \texttt{https://archive.ics.uci.edu/ml/datasets/Air+Quality}.}}
%
\label{fig:GME_Prices_12_1}
%
\end{center}
\end{figure}
%::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
%
\clearpage
\subsection*{Code}
The R code for previous examples is
\begin{lstlisting}[belowskip=-0.8 \baselineskip]
par(mfrow=c(2,2))
tsplot(globtemp, type="o")
tsplot(diff(globtemp), type="o")
acf1(globtemp, 48)
acf1(diff(globtemp), 48)
\end{lstlisting}
%
\textbf{\color{red}Try by yourself, before moving to the next chapters\dots}
\clearpage
%
%::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
% FIGURE:
%::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
\subsection{Global Warming}
\begin{figure}[!h]
\captionsetup{font={footnotesize}}
\begin{center}
%
\includegraphics[width=0.45\textwidth]{Figures/Example_1_Intro_TSA_GlobTemp_1.eps}
%
\caption{\footnotesize{Global mean land--ocean temperature index from 1880 to 2015, with the base period 1951-1980.}}
%
\label{fig:globalwarming}
%
\end{center}
\end{figure}
%::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
%
\clearpage
Consider the global temperature series record shown in Figure \ref{fig:globalwarming}. The data are the global mean land--ocean temperature index from 1880 to 2015, with the base period 1951-1980.
The values are deviations ($^{\circ}$C) from the 1951-1980 average, updated from Hansen et al. (2006).
The upward trend in the series during the latter part of the twentieth century has been used as an argument for the climate change hypothesis. Note that the trend is not linear, with periods of leveling off and then sharp upward trends.
Most climate scientists agree the main cause of the current global warming trend is human expansion of the greenhouse effect: \texttt{https://climate.nasa.gov/causes/}.
The R code for this example is:
\begin{lstlisting}[belowskip=-0.8 \baselineskip]
tsplot(globtemp, type="o", ylab="Global Temperature Deviations")
\end{lstlisting}
\clearpage
%
%::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
% FIGURE:
%::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
\subsection{fMRI imaging}
\begin{figure}[!h]
\captionsetup{font={footnotesize}}
\begin{center}
%
\includegraphics[width=0.45\textwidth]{Figures/Example_1_Intro_TSA_fmri_1.eps}
%
\caption{\footnotesize{fMRI data from various locations in the cortex, thalamus, and cerebellum; $n = 128$ points, one observation taken every 2 seconds.}}
%
\label{fig:fmri}
%
\end{center}
\end{figure}
%::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
%
\clearpage
Often, time series are observed under varying experimental conditions or treatment configurations.
Such a set of series is shown in Figure \ref{fig:fmri}, where data are collected from various locations in the brain via functional magnetic resonance imaging (fMRI). In this example, a stimulus was applied for 32 seconds and then stopped for 32 seconds; thus, the signal period is 64 seconds. The sampling rate was one observation every 2 seconds for 256 seconds (n = 128).
The series are consecutive measures of blood oxygenation--level dependent (bold) signal intensity, which measures areas of activation in the brain.
Notice that the periodicities appear strongly in the motor cortex series and less strongly in the thalamus and cerebellum.
The fact that one has series from different areas of the brain suggests testing whether the areas are responding differently to the stimulus.
\clearpage
Use the following R commands to plot the data:
%
\begin{lstlisting}[belowskip=-0.8 \baselineskip]
par(mfrow=c(2,1), mar=c(3,2,1,0)+.5, mgp=c(1.6,.6,0))
ts.plot(fmri1[,2:5], col=1:4, ylab="BOLD", xlab="", main="Cortex")
ts.plot(fmri1[,6:9], col=1:4, ylab="BOLD", xlab="", main="Thalam & Cereb")
mtext("Time (1 pt = 2 sec)", side=1, line=2)
\end{lstlisting}
\clearpage
%
%::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
% FIGURE:
%::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
\subsection{El Ni\~no and fish population}
\begin{figure}[!h]
\captionsetup{font={footnotesize}}
\begin{center}
%
\includegraphics[width=0.45\textwidth]{Figures/Example_1_Intro_TSA_ElNino_1.eps}
%
\caption{\footnotesize{Monthly SOI and Recruitment (estimated new fish), 1950--1987.}}
%
\label{fig:elnino_fish}
%
\end{center}
\end{figure}
%::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
%
\clearpage
We may also be interested in analyzing several time series at once.
Figure \ref{fig:elnino_fish} shows monthly values of an environmental series called the Southern Oscillation Index (SOI) and associated Recruitment (an index of the number of new fish).
Both series are for a period of 453 months ranging over the years 1950--1987.
SOI measures changes in air pressure related to sea surface temperatures in the central Pacific Ocean and smaller values correspond to warmer temperatures.
During El Ni\~no, the pressure over the eastern and western Pacific reverses. This causes the trade winds to diminish, leading to an eastward movement of warm water along the equator. As a result, the surface waters of the central and eastern Pacific warm with far--reaching consequences to weather patterns. The series show two basic oscillations types, an obvious annual cycle (hot in the summer, cold in the winter), and a slower frequency that seems to repeat about every 4 years.
\clearpage
The two series are also related; it is easy to imagine the fish population is dependent on the ocean temperature.
The following R code will reproduce Figure \ref{fig:elnino_fish}:
%
\begin{lstlisting}[belowskip=-0.8 \baselineskip]
par(mfrow = c(2,1)) # set up the graphics
tsplot(soi, ylab="", xlab="", main="Southern Oscillation Index")
tsplot(rec, ylab="", main="Recruitment")
\end{lstlisting}
\clearpage
\section{Time series methods}
The primary objective of time series analysis is to develop mathematical models that provide plausible descriptions for sample data.
\subsection{White Noise}
A simple kind of generated series might be a collection of uncorrelated random variables, wt, with mean 0 and finite variance $\sigma_\varepsilon^2$. We denote this process as $\varepsilon_t\sim\mathsf{N}\left(0,\sigma_\varepsilon^2\right)$ .
The time series generated from uncorrelated variables is used as a model for noise in engineering applications where it is called white noise.
We often require stronger conditions and need the noise to be Gaussian white noise, wherein the $\varepsilon_t$ are independent and identically distributed (iid) normal random variables, with mean 0 and variance $\sigma_\varepsilon^2$.
Although both cases require zero mean and constant variance, the difference is that generically, the term white noise means the time series is uncorrelated. Gaussian white noise implies normality (which implies independence).
If the stochastic behavior of all time series could be explained in terms of the white noise model, classical statistical methods would suffice.
\clearpage
\subsection{Moving averages and filters}
We might replace the white noise series wt by a moving average that smooths the series. For example
\begin{equation}
\label{eq:ma_filter_def}
v_t=\frac{1}{3}\left(\varepsilon_{t-1}+\varepsilon_t+\varepsilon_{t+1}\right).
\end{equation}
To reproduce a WN and filter in R use the following commands.
\begin{lstlisting}[belowskip=-0.8 \baselineskip]
w = rnorm(500,0,1) # 500 N(0,1) variates
v = filter(w, sides=2, rep(1/3,3)) # moving average
par(mfrow=c(2,1))
tsplot(w, main="white noise")
tsplot(v, ylim=c(-3,3), main="moving average")
\end{lstlisting}
%
\clearpage
This series is much smoother than the white noise series, and it is apparent that averaging removes some of the high frequency behavior of the noise.
A linear combination of values in a time series such as in equation \eqref{eq:ma_filter_def} is referred to, generically, as a filtered series; hence the command filter.
\clearpage
\subsection{Autoregressions}
Suppose we consider the white noise series $\varepsilon_t$ as input and calculate the output using the second--order equation
\begin{equation}
\label{eq:ar_filter_def}
x_t=x_{t-1}-0.9x_{t-2}+\varepsilon_{t},
\end{equation}
%
successively for $t=1,2,\dots$ Equation \eqref{eq:ar_filter_def} represents a regression or prediction of the current value $x_t$ of a time series as a function of the past two values of the series, and, hence, the term autoregression is suggested for this model.
A problem with startup values exists here because \eqref{eq:ar_filter_def} also depends on the initial conditions $x_0$ and $x_{-1}$, but for now, assume they are zero. We can then generate data recursively by substituting into \eqref{eq:ar_filter_def}.
\clearpage
One way to simulate and plot data from the model \eqref{eq:ar_filter_def} in R is to use the following commands (another way is to use \texttt{arima.sim}). The initial conditions are set equal to zero so we let the filter run an extra 50 values to avoid startup problems.
\begin{lstlisting}[belowskip=-0.8 \baselineskip]
w = rnorm(550,0,1) # 50 extra to avoid startup problems
x = filter(w, filter=c(1,-.9), method="recursive")[-(1:50)]
tsplot(x, main="autoregression")
\end{lstlisting}
\clearpage
\subsection{Random walk with drift}
A model for analyzing trend such as seen in the global temperature data is the random walk with drift model given by
\begin{equation}
\label{eq:rw_def}
x_t=\delta+x_{t-1}+\varepsilon_{t},
\end{equation}
%
for $t=1,2,\dots$, with initial condition $x_0=0$, and where $\varepsilon_{t}$ is white noise. The constant $\delta$ is called the drift, and when $\delta=0$, the model is called simply a random walk because the value of the time series at time $t$ is the value of the series at time $t-1$ plus a completely random movement determined by $\varepsilon_{t}$. Note that we may rewrite \eqref{eq:rw_def} as a cumulative sum of white noise variates. That is
%
\begin{equation}
\label{eq:rw_def_2}
x_t=\delta t+\sum_{j=1}^t\varepsilon_{j},
\end{equation}
%
for $t=1,2,\dots$
\clearpage
The following code simulate a RW process (notice the use of multiple commands per line using a semicolon)
\begin{lstlisting}[belowskip=-0.8 \baselineskip]
set.seed(154) # so you can reproduce the results
w = rnorm(200); x = cumsum(w) # two commands in one line
wd = w +.2; xd = cumsum(wd)
tsplot(xd, ylim=c(-5,55), main="random walk", ylab='') abline(a=0, b=.2, lty=2) # drift
lines(x, col=4)
abline(h=0, col=4, lty=2)
\end{lstlisting}
\clearpage
\subsection{Measures of Dependence}
We now discuss various measures that describe the general behavior of a process as it evolves over time. A rather simple descriptive measure is the mean function, such as the average monthly high temperature for your city. In this case, the mean is a function of time.
\subsubsection{The mean function}
The mean function is defined as
\begin{equation}
\label{eq:mean_fct_def}
\mu_{x_t}=\mathsf{E}\left(x_t\right),
\end{equation}
%
provided it exists, where $\mathsf{E}$ denotes the usual expected value operator. When no confusion exists about which time series we are referring to, we will drop a subscript and write $\mu_{x_t}$ as $\mu_t$.
\clearpage
\subsubsection{The autocovariance function}
The autocovariance function is defined as the second moment product
\begin{equation}
\label{eq:acov_def}
\gamma_{x}\left(t,s\right)=\mathsf{cov}\left(x_t,x_s\right)=\mathsf{E}\left[\left(x_t-\mu_t\right)\left(x_s-\mu_s\right)\right],
\end{equation}
%
The autocovariance measures the linear dependence between two points on the same series observed at different times.
Recall from classical statistics that if $\gamma_{x}\left(t,s\right)=0$, then $x_s$ and $x_t$ are not linearly related, but there still may be some dependence structure between them.
If, however, $x_t$ and $x_s$ are bivariate normal, $\gamma_{x}\left(t,s\right)=0$ ensures their independence. It is clear that, for $s = t$, the autocovariance reduces to the (assumed finite) variance, because
\begin{equation}
\label{eq:acov_0_def}
\gamma_{x}\left(t,t\right)=\mathsf{cov}\left(x_t,x_t\right)=\mathsf{E}\left[\left(x_t-\mu_t\right)^2\right]=\mathsf{var}(x_t).
\end{equation}
%
\clearpage
\subsubsection{The autocorrelation function}
The autocorrelation function (ACF) is defined as
\begin{equation}
\label{eq:acf_def}
\rho_{x}\left(t,s\right)=\frac{\gamma_{x}\left(t,s\right)}{\sqrt{\gamma_{x}\left(t,t\right)}\sqrt{\gamma_{x}\left(s,s\right)}}.
\end{equation}
%
The ACF measures the linear predictability of the series at time $t$, say $x_t$, using only the value $x_s$.
We can show easily that $-1 \leq\rho_{x}\left(t,s\right) \leq 1$ using the Cauchy--Schwarz inequality.
If we can predict $x_t$ perfectly from $x_s$ through a linear relationship, $x_t = \beta_0 + \beta_1x_s$, then the correlation will be $+1$ when
$\beta_1> 0$, and $-1$ when $\beta_1<0$.
Hence, we have a rough measure of the ability to forecast the series at time $t$ from the value at time $s$.
\clearpage
\subsection{Stationary time series}
The preceding definitions of the mean and autocovariance functions are completely general. Although we have not made any special assumptions about the behavior of the time series, many of the preceding examples have hinted that a sort of regularity may exist over time in the behavior of a time series.
\begin{definition}
A strictly stationary time series is one for which the probabilistic behavior of every collection of values and shifted values
\begin{equation}
\left\{x_{t_1},x_{t_2},\dots,x_{t_k}\right\},\qquad\left\{x_{t_1+h},x_{t_2+h},\dots,x_{t_k+h}\right\},
\end{equation}
%
are identical, for all $k = 1, 2, \dots$, all time points $t_1, t_2, \dots , t_k$, and all time shifts