-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathevaluation.py
78 lines (63 loc) · 2.62 KB
/
evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
from typing import Dict, List
import torch
from tqdm import tqdm
def evaluate(model, val_loader, config):
model.eval()
f1_triple = F1Triplet(config)
print('Evaluating...')
with torch.no_grad():
for batch_ndx, sample in tqdm(enumerate(val_loader), total=len(val_loader)):
output = model(sample, do_train=False)
f1_triple(output["decode_result"], output["spo_gold"])
result = f1_triple.get_metric()
return result["fscore"]
class F1Triplet:
def __init__(self, config):
self.skip_subject = config.skip_subject
norm_t = lambda t: t.lower().strip('@')
if self.skip_subject:
self.get_seq = lambda dic: (dic["object"], dic["predicate"])
else:
self.get_seq = lambda dic: (norm_t(dic["subject"]), norm_t(dic["object"]), norm_t(dic["predicate"]))
self.A = 1e-10
self.B = 1e-10
self.C = 1e-10
def reset(self) -> None:
self.A = 1e-10
self.B = 1e-10
self.C = 1e-10
def get_metric(self, reset: bool = False):
if reset:
self.reset()
f1, p, r = 2 * self.A / (self.B + self.C), self.A / self.B, self.A / self.C
result = {"precision": p, "recall": r, "fscore": f1}
return result
def __call__(self, predictions: List[List[Dict[str, str]]], gold_labels: List[List[Dict[str, str]]]):
for g, p in zip(gold_labels, predictions):
g_set = set("_".join(self.get_seq(gg)) for gg in g)
p_set = set("_".join(self.get_seq(pp)) for pp in p)
self.A += len(g_set & p_set)
self.B += len(p_set)
self.C += len(g_set)
def load_model(_model, path):
_model.load_state_dict(torch.load(path, map_location="cpu"))
return _model
if __name__ == '__main__':
from model import AtTGenModel as Model
from dataloader import TreeDataset, collate
from torch.utils.data import DataLoader
import args
config = args.get_args()
config.name = 'ship'
config.batch_size = 5
# config.tokenizer = 'base'
# config.data_dir = './data/nyt'
# config.ontology_vocab = 'relation_vocab.json'
val_dataset = TreeDataset(data_dir=config.data_dir, data_type='train', ontology_vocab=config.ontology_vocab,
tokenizer=config.tokenizer)
val_loader = DataLoader(val_dataset, batch_size=config.batch_size, shuffle=False, num_workers=1,
collate_fn=collate, pin_memory=True)
model = Model(config)
model = load_model(model, './runs/{}_best'.format(config.name))
model.to(config.device)
print(evaluate(model, val_loader, config))